

Welcome to rlpyt’s documentation!

rlpyt includes modular, optimized implementations of common deep RL algorithms in PyTorch, with unified infrastructure supporting all three major families of model-free algorithms: policy gradient, deep-q learning, and q-function policy gradient. It is intended to be a high-throughput code-base for small- to medium-scale research (large-scale meaning like OpenAI Dota with 100’s GPUs). A conceptual overview is provided in the white paper [https://arxiv.org/abs/1909.01500], and the code (with examples) in the github repository [https://github.com/astooke/rlpyt].

This documentation aims to explain the intent of the code structure, to make it easier to use and modify (it might not detail every keyword argument as in a fixed library). See the github README for installation instructions and other introductory notes. Please share any questions or comments to do with documenantation on the github issues.

The sections are organized as follows. First, several of the base classes are introduced. Then, each algorithm family and associated agents and models are grouped together. Infrastructure code such as the runner classes and sampler classes are covered next. All the remaining components are covered thereafter, in no particular order.

Contents:

	Base Classes and Interfaces
	Algorithms

	Environments

	Agents

	Policy Gradient Implementations
	Algorithms

	Agents

	Models

	Deep Q-Learning Implementations
	DQN

	Categorical-DQN

	Recurrent DQN (R2D1)

	Miscellaneous

	Q-Value Policy Gradient Implementations
	Deep Deterministc Policy Gradient (DDPG)

	Twin Delayed Deep Deterministic Policy Gradient (TD3)

	Soft Actor Critic (SAC)

	Runners
	Single-GPU Runners

	Multi-GPU Runners

	Asynchronous Runners

	Samplers
	Serial Sampler

	Parallel Samplers

	Parallel Sampler Worker

	Asynchronous Samplers
	Base Components

	Serial

	CPU-Agent

	GPU-Agent

	GPU-Agent, Alternating Workers

	Collectors
	Training Collectors

	Evaluation Collectors

	Distributions

	Spaces

	Model Components
	Utilities

	Environments
	Atari

	Gym Wrappers

	Replay Buffers
	Replay Buffer Components

	Full Replay Buffer Classes

	Named Array Tuples
	Alternative Implementation

	Utilities
	Array

	Tensor

	Miscellaneous Array / Tensor

	Collections

	Buffers

	Algorithms

	Synchronize

	Quick Arguments

	Progress Bar

	Seed

	Logger

	Creating and Launching Experiments
	Launching

	Variants

	Affinity

Indices and tables

	Index

	Module Index

	Search Page

Base Classes and Interfaces

This page describes the base classes for three main components: algorithm, agent, and environment. These are the most likely to need modification for a new project. Intended interfaces to the infrastructure code (i.e. runner and sampler) are specified here. More details on specific instances of these components appear in following pages.

Commonly, these classes will simply store their keyword arguments when instantiated, and actual initialization occurs in methods to be called later by the runner or sampler.

Algorithms

	
class rlpyt.algos.base.RlAlgorithm

	Trains the agent using gathered samples, for example by constructing
TD-errors and performing gradient descent on the agent’s model parameters.
Includes pre-processing of samples e.g. discounting returns.

	
initialize(agent, n_itr, batch_spec, mid_batch_reset, examples, world_size=1, rank=0)

	Typically called in the runner during startup.

	Parameters

	
	agent – The learning agent instance.

	n_itr (int) – Number of training loop iterations which will be run (e.g. corresponds to each call of optimize_agent())

	batch_spec – Holds sampler batch dimensions.

	mid_batch_reset (bool) – Whether the sampler resets environments during a sampling batch (True) or only between batches (False). Affects whether some samples are invalid for training.

	examples – Structure of example RL quantities, e.g. observation, action, agent_info, env_info, e.g. in case needed to allocate replay buffer.

	world_size (int) – Number of separate optimizing processes (e.g. multi-GPU).

	rank (int) – Unique index for each optimizing process.

	
async_initialize(agent, sampler_n_itr, batch_spec, mid_batch_reset, examples, world_size=1)

	Called instead of initialize() in async runner (not needed unless
using async runner). Should return async replay_buffer using shared
memory.

	
optim_initialize(rank=0)

	Called in async runner which requires two stages of initialization;
might also be used in initialize() to avoid redundant code.

	
optimize_agent(itr, samples=None, sampler_itr=None)

	Train the agent for some number of parameter updates, e.g. either
using new samples or a replay buffer.

Typically called in the runner’s training loop.

	Parameters

	
	itr (int) – Iteration of the training loop.

	samples – New samples from the sampler (for None case, see async runner).

	sampler_itr – For case other than None, see async runner.

	
optim_state_dict()

	Return the optimizer state dict (e.g. Adam); overwrite if using
multiple optimizers.

	
load_optim_state_dict(state_dict)

	Load an optimizer state dict; should expect the format returned
from optim_state_dict().

Environments

Environments are expected to input/output numpy arrays.

	
class rlpyt.envs.base.Env

	The learning task, e.g. an MDP containing a transition function T(state,
action)–>state’. Has a defined observation space and action space.

	
step(action)

	Run on timestep of the environment’s dynamics using the input action,
advancing the internal state; T(state,action)–>state’.

	Parameters

	action – An element of this environment’s action space.

	Returns

	An element of this environment’s observation space corresponding to the next state.
reward (float): A scalar reward resulting from the state transition.
done (bool): Indicates whether the episode has ended.
info (namedtuple): Additional custom information.

	Return type

	observation

	
reset()

	Resets the state of the environment.

	Returns

	The initial observation of the new episode.

	Return type

	observation

Agents

Agents are expected to input/output torch tensors.

	
class rlpyt.agents.base.BaseAgent(ModelCls=None, model_kwargs=None, initial_model_state_dict=None)

	The agent performs many functions, including: action-selection during
sampling, returning policy-related values to use in training (e.g. action
probabilities), storing recurrent state during sampling, managing model
device, and performing model parameter communication between processes.
The agent is both interfaces: sampler<–>neural network<–>algorithm.
Typically, each algorithm and environment combination will require at
least some of its own agent functionality.

The base agent automatically carries out some of these roles. It assumes
there is one neural network model. Agents using multiple models might
need to extend certain funcionality to include those models, depending on
how they are used.

	
__init__(ModelCls=None, model_kwargs=None, initial_model_state_dict=None)

	Arguments are saved but no model initialization occurs.

	Parameters

	
	ModelCls – The model class to be used.

	model_kwargs (optional) – Any keyword arguments to pass when instantiating the model.

	initial_model_state_dict (optional) – Initial model parameter values.

	
__call__(observation, prev_action, prev_reward)

	Returns values from model forward pass on training data (i.e. used
in algorithm).

	
initialize(env_spaces, share_memory=False, **kwargs)

	Instantiates the neural net model(s) according to the environment
interfaces.

Uses shared memory as needed–e.g. in CpuSampler, workers have a copy
of the agent for action-selection. The workers automatically hold
up-to-date parameters in model, because they exist in shared
memory, constructed here before worker processes fork. Agents with
additional model components (beyond self.model) for
action-selection should extend this method to share those, as well.

Typically called in the sampler during startup.

	Parameters

	
	env_spaces – passed to make_env_to_model_kwargs(), typically namedtuple of ‘observation’ and ‘action’.

	share_memory (bool) – whether to use shared memory for model parameters.

	
make_env_to_model_kwargs(env_spaces)

	Generate any keyword args to the model which depend on environment interfaces.

	
to_device(cuda_idx=None)

	Moves the model to the specified cuda device, if not None. If
sharing memory, instantiates a new model to preserve the shared (CPU)
model. Agents with additional model components (beyond
self.model) for action-selection or for use during training should
extend this method to move those to the device, as well.

Typically called in the runner during startup.

	
data_parallel()

	Wraps the model with PyTorch’s DistributedDataParallel. The
intention is for rlpyt to create a separate Python process to drive
each GPU (or CPU-group for CPU-only, MPI-like configuration). Agents
with additional model components (beyond self.model) which will
have gradients computed through them should extend this method to wrap
those, as well.

Typically called in the runner during startup.

	
async_cpu(share_memory=True)

	Used in async runner only; creates a new model instance to be used
in the sampler, separate from the model shared with the optimizer
process. The sampler can operate asynchronously, and choose when to
copy the optimizer’s (shared) model parameters into its model (under
read-write lock). The sampler model may be stored in shared memory,
as well, to instantly share values with sampler workers. Agents with
additional model components (beyond self.model) should extend this
method to do the same with those, if using in asynchronous mode.

Typically called in the runner during startup.

TODO: double-check wording if this happens in sampler and optimizer.

	
step(observation, prev_action, prev_reward)

	Returns selected actions for environment instances in sampler.

	
state_dict()

	Returns model parameters for saving.

	
load_state_dict(state_dict)

	Load model parameters, should expect format returned from state_dict().

	
train_mode(itr)

	Go into training mode (e.g. see PyTorch’s Module.train()).

	
sample_mode(itr)

	Go into sampling mode.

	
eval_mode(itr)

	Go into evaluation mode. Example use could be to adjust epsilon-greedy.

	
sync_shared_memory()

	Copies model parameters into shared_model, e.g. to make new values
available to sampler workers. If running CPU-only, these will be the
same object–no copy necessary. If model is on GPU, copy to CPU is
performed. (Requires initialize(share_memory=True) called
previously. Not used in async mode.

Typically called in the XXX during YY.

	
send_shared_memory()

	Used in async mode only, in optimizer process; copies parameters
from trained model (maybe GPU) to shared model, which the sampler can
access. Does so under write-lock, and increments send-count which sampler
can check.

Typically called in the XXX during YY.

	
recv_shared_memory()

	Used in async mode, in sampler process; copies parameters from
model shared with optimizer into local model, if shared model has been
updated. Does so under read-lock. (Local model might also be shared
with sampler workers).

Typically called in the XXX during YY.

Recurrent Agents

	
class rlpyt.agents.base.RecurrentAgentMixin(*args, **kwargs)

	Mixin class to manage recurrent state during sampling (so the sampler
remains agnostic). To be used like class
MyRecurrentAgent(RecurrentAgentMixin, MyAgent):.

	
reset()

	Sets the recurrent state to None, which built-in PyTorch
modules conver to zeros.

	
reset_one(idx)

	Sets the recurrent state corresponding to one environment instance
to zero. Assumes rnn state is in cudnn-compatible shape: [N,B,H],
where B corresponds to environment index.

	
advance_rnn_state(new_rnn_state)

	Sets the recurrent state to the newly computed one (i.e. recurrent agents should
call this at the end of their step()).

	
train_mode(itr)

	If coming from sample mode, store the rnn state elsewhere and clear it.

	
sample_mode(itr)

	If coming from non-sample modes, restore the last sample-mode rnn state.

	
eval_mode(itr)

	If coming from sample mode, store the rnn state elsewhere and clear it.

	
class rlpyt.agents.base.AlternatingRecurrentAgentMixin(*args, **kwargs)

	Maintain an alternating pair of recurrent states to use when stepping in
the sampler. Automatically swap them out when advance_rnn_state() is
called, so it otherwise behaves like regular recurrent agent. Should use
only in alternating samplers, where two sets of environment instances take
turns stepping (no special class needed for feedforward agents). Use in
place of RecurrentAgentMixin.

Policy Gradient Implementations

This page documents the implemented policy gradient / actor-critic algorithms, agents, and models.

Algorithms

	
class rlpyt.algos.pg.base.PolicyGradientAlgo

	Bases: rlpyt.algos.base.RlAlgorithm

Base policy gradient / actor-critic algorithm, which includes
initialization procedure and processing of data samples to compute
advantages.

	
initialize(agent, n_itr, batch_spec, mid_batch_reset=False, examples=None, world_size=1, rank=0)

	Build the torch optimizer and store other input attributes. Params
batch_spec and examples are unused.

	
process_returns(samples)

	Compute bootstrapped returns and advantages from a minibatch of
samples. Uses either discounted returns (if self.gae_lambda==1)
or generalized advantage estimation. Mask out invalid samples
according to mid_batch_reset or for recurrent agent. Optionally,
normalize advantages.

	
class rlpyt.algos.pg.a2c.A2C(discount=0.99, learning_rate=0.001, value_loss_coeff=0.5, entropy_loss_coeff=0.01, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, clip_grad_norm=1.0, initial_optim_state_dict=None, gae_lambda=1, normalize_advantage=False)

	Bases: rlpyt.algos.pg.base.PolicyGradientAlgo

Advantage Actor Critic algorithm (synchronous). Trains the agent by
taking one gradient step on each iteration of samples, with advantages
computed by generalized advantage estimation.

	
__init__(discount=0.99, learning_rate=0.001, value_loss_coeff=0.5, entropy_loss_coeff=0.01, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, clip_grad_norm=1.0, initial_optim_state_dict=None, gae_lambda=1, normalize_advantage=False)

	Saves the input settings.

	
optimize_agent(itr, samples)

	Train the agent on input samples, by one gradient step.

	
loss(samples)

	Computes the training loss: policy_loss + value_loss + entropy_loss.
Policy loss: log-likelihood of actions * advantages
Value loss: 0.5 * (estimated_value - return) ^ 2
Organizes agent inputs from training samples, calls the agent instance
to run forward pass on training data, and uses the
agent.distribution to compute likelihoods and entropies. Valid
for feedforward or recurrent agents.

	
class rlpyt.algos.pg.ppo.PPO(discount=0.99, learning_rate=0.001, value_loss_coeff=1.0, entropy_loss_coeff=0.01, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, clip_grad_norm=1.0, initial_optim_state_dict=None, gae_lambda=1, minibatches=4, epochs=4, ratio_clip=0.1, linear_lr_schedule=True, normalize_advantage=False)

	Bases: rlpyt.algos.pg.base.PolicyGradientAlgo

Proximal Policy Optimization algorithm. Trains the agent by taking
multiple epochs of gradient steps on minibatches of the training data at
each iteration, with advantages computed by generalized advantage
estimation. Uses clipped likelihood ratios in the policy loss.

	
__init__(discount=0.99, learning_rate=0.001, value_loss_coeff=1.0, entropy_loss_coeff=0.01, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, clip_grad_norm=1.0, initial_optim_state_dict=None, gae_lambda=1, minibatches=4, epochs=4, ratio_clip=0.1, linear_lr_schedule=True, normalize_advantage=False)

	Saves input settings.

	
initialize(*args, **kwargs)

	Extends base initialize() to initialize learning rate schedule, if
applicable.

	
optimize_agent(itr, samples)

	Train the agent, for multiple epochs over minibatches taken from the
input samples. Organizes agent inputs from the training data, and
moves them to device (e.g. GPU) up front, so that minibatches are
formed within device, without further data transfer.

	
loss(agent_inputs, action, return_, advantage, valid, old_dist_info, init_rnn_state=None)

	Compute the training loss: policy_loss + value_loss + entropy_loss
Policy loss: min(likelhood-ratio * advantage, clip(likelihood_ratio, 1-eps, 1+eps) * advantage)
Value loss: 0.5 * (estimated_value - return) ^ 2
Calls the agent to compute forward pass on training data, and uses
the agent.distribution to compute likelihoods and entropies. Valid
for feedforward or recurrent agents.

Agents

Continuous Actions

	
class rlpyt.agents.pg.gaussian.GaussianPgAgent(ModelCls=None, model_kwargs=None, initial_model_state_dict=None)

	Bases: rlpyt.agents.base.BaseAgent

Agent for policy gradient algorithm using Gaussian action distribution.

	
__call__(observation, prev_action, prev_reward)

	Performs forward pass on training data, for algorithm.

	
initialize(env_spaces, share_memory=False, global_B=1, env_ranks=None)

	Extends base method to build Gaussian distribution.

	
step(observation, prev_action, prev_reward)

	Compute policy’s action distribution from inputs, and sample an
action. Calls the model to produce mean, log_std, and value estimate.
Moves inputs to device and returns outputs back to CPU, for the
sampler. (no grad)

	
value(observation, prev_action, prev_reward)

	Compute the value estimate for the environment state, e.g. for the
bootstrap value, V(s_{T+1}), in the sampler. (no grad)

	
class rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgentBase(ModelCls=None, model_kwargs=None, initial_model_state_dict=None)

	Bases: rlpyt.agents.base.BaseAgent

	
__call__(observation, prev_action, prev_reward, init_rnn_state)

	Performs forward pass on training data, for algorithm (requires
recurrent state input).

	
step(observation, prev_action, prev_reward)

	Compute policy’s action distribution from inputs, and sample an
action. Calls the model to produce mean, log_std, value estimate, and
next recurrent state. Moves inputs to device and returns outputs back
to CPU, for the sampler. Advances the recurrent state of the agent.
(no grad)

	
value(observation, prev_action, prev_reward)

	Compute the value estimate for the environment state using the
currently held recurrent state, without advancing the recurrent state,
e.g. for the bootstrap value V(s_{T+1}), in the sampler. (no grad)

	
class rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgent(*args, **kwargs)

	Bases: rlpyt.agents.base.RecurrentAgentMixin, rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgentBase

	
class rlpyt.agents.pg.gaussian.AlternatingRecurrentGaussianPgAgent(*args, **kwargs)

	Bases: rlpyt.agents.base.AlternatingRecurrentAgentMixin, rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgentBase

	
class rlpyt.agents.pg.mujoco.MujocoMixin

	Mixin class defining which environment interface properties
are given to the model.
Now supports observation normalization, including multi-GPU.

	
make_env_to_model_kwargs(env_spaces)

	Extract observation_shape and action_size.

	
class rlpyt.agents.pg.mujoco.MujocoFfAgent(ModelCls=<class 'rlpyt.models.pg.mujoco_ff_model.MujocoFfModel'>, **kwargs)

	Bases: rlpyt.agents.pg.mujoco.MujocoMixin, rlpyt.agents.pg.gaussian.GaussianPgAgent

	
__init__(ModelCls=<class 'rlpyt.models.pg.mujoco_ff_model.MujocoFfModel'>, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
class rlpyt.agents.pg.mujoco.MujocoLstmAgent(ModelCls=<class 'rlpyt.models.pg.mujoco_lstm_model.MujocoLstmModel'>, **kwargs)

	Bases: rlpyt.agents.pg.mujoco.MujocoMixin, rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgent

	
__init__(ModelCls=<class 'rlpyt.models.pg.mujoco_lstm_model.MujocoLstmModel'>, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

Discrete Actions

	
class rlpyt.agents.pg.categorical.CategoricalPgAgent(ModelCls=None, model_kwargs=None, initial_model_state_dict=None)

	Bases: rlpyt.agents.base.BaseAgent

Agent for policy gradient algorithm using categorical action distribution.
Same as GausssianPgAgent and related classes, except uses
Categorical distribution, and has a different interface to the model
(model here outputs discrete probabilities in place of means and log_stds,
while both output the value estimate).

	
class rlpyt.agents.pg.atari.AtariMixin

	Mixin class defining which environment interface properties
are given to the model.

	
make_env_to_model_kwargs(env_spaces)

	Extract image shape and action size.

	
class rlpyt.agents.pg.atari.AtariFfAgent(ModelCls=<class 'rlpyt.models.pg.atari_ff_model.AtariFfModel'>, **kwargs)

	Bases: rlpyt.agents.pg.atari.AtariMixin, rlpyt.agents.pg.categorical.CategoricalPgAgent

	
__init__(ModelCls=<class 'rlpyt.models.pg.atari_ff_model.AtariFfModel'>, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
class rlpyt.agents.pg.atari.AtariLstmAgent(ModelCls=<class 'rlpyt.models.pg.atari_lstm_model.AtariLstmModel'>, **kwargs)

	Bases: rlpyt.agents.pg.atari.AtariMixin, rlpyt.agents.pg.categorical.RecurrentCategoricalPgAgent

	
__init__(ModelCls=<class 'rlpyt.models.pg.atari_lstm_model.AtariLstmModel'>, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

Models

	
class rlpyt.models.pg.mujoco_ff_model.MujocoFfModel(observation_shape, action_size, hidden_sizes=None, hidden_nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, mu_nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, init_log_std=0.0, normalize_observation=False, norm_obs_clip=10, norm_obs_var_clip=1e-06)

	Bases: sphinx.ext.autodoc.importer._MockObject

Model commonly used in Mujoco locomotion agents: an MLP which outputs
distribution means, separate parameter for learned log_std, and separate
MLP for state-value estimate.

	
__init__(observation_shape, action_size, hidden_sizes=None, hidden_nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, mu_nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, init_log_std=0.0, normalize_observation=False, norm_obs_clip=10, norm_obs_var_clip=1e-06)

	Instantiate neural net modules according to inputs.

	
forward(observation, prev_action, prev_reward)

	Compute mean, log_std, and value estimate from input state. Infers
leading dimensions of input: can be [T,B], [B], or []; provides
returns with same leading dims. Intermediate feedforward layers
process as [T*B,H], with T=1,B=1 when not given. Used both in sampler
and in algorithm (both via the agent).

	
class rlpyt.models.pg.mujoco_lstm_model.MujocoLstmModel(observation_shape, action_size, hidden_sizes=None, lstm_size=256, nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, normalize_observation=False, norm_obs_clip=10, norm_obs_var_clip=1e-06)

	Bases: sphinx.ext.autodoc.importer._MockObject

Recurrent model for Mujoco locomotion agents: an MLP into an LSTM which
outputs distribution means, log_std, and state-value estimate.

	
__init__(observation_shape, action_size, hidden_sizes=None, lstm_size=256, nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, normalize_observation=False, norm_obs_clip=10, norm_obs_var_clip=1e-06)

	Initialize self. See help(type(self)) for accurate signature.

	
forward(observation, prev_action, prev_reward, init_rnn_state)

	Compute mean, log_std, and value estimate from input state. Infer
leading dimensions of input: can be [T,B], [B], or []; provides
returns with same leading dims. Intermediate feedforward layers
process as [T*B,H], and recurrent layers as [T,B,H], with T=1,B=1 when
not given. Used both in sampler and in algorithm (both via the agent).
Also returns the next RNN state.

	
class rlpyt.models.pg.atari_ff_model.AtariFfModel(image_shape, output_size, fc_sizes=512, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

Feedforward model for Atari agents: a convolutional network feeding an
MLP with outputs for action probabilities and state-value estimate.

	
__init__(image_shape, output_size, fc_sizes=512, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Instantiate neural net module according to inputs.

	
forward(image, prev_action, prev_reward)

	Compute action probabilities and value estimate from input state.
Infers leading dimensions of input: can be [T,B], [B], or []; provides
returns with same leading dims. Convolution layers process as [T*B,
*image_shape], with T=1,B=1 when not given. Expects uint8 images in
[0,255] and converts them to float32 in [0,1] (to minimize image data
storage and transfer). Used in both sampler and in algorithm (both
via the agent).

	
class rlpyt.models.pg.atari_lstm_model.AtariLstmModel(image_shape, output_size, fc_sizes=512, lstm_size=512, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

Recurrent model for Atari agents: a convolutional network into an FC layer
into an LSTM which outputs action probabilities and state-value estimate.

	
__init__(image_shape, output_size, fc_sizes=512, lstm_size=512, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Instantiate neural net module according to inputs.

	
forward(image, prev_action, prev_reward, init_rnn_state)

	Compute action probabilities and value estimate from input state.
Infers leading dimensions of input: can be [T,B], [B], or []; provides
returns with same leading dims. Convolution layers process as [T*B,
*image_shape], with T=1,B=1 when not given. Expects uint8 images in
[0,255] and converts them to float32 in [0,1] (to minimize image data
storage and transfer). Recurrent layers processed as [T,B,H]. Used in
both sampler and in algorithm (both via the agent). Also returns the
next RNN state.

Deep Q-Learning Implementations

This page documents the implemented deep Q-learning algorithms, agents, and models. Up to Rainbow, minus noisy nets, can be run using Categorical-DQN with the options for double-DQN, dueling heads, n-step returns, and prioritized replay.

DQN

	
class rlpyt.algos.dqn.dqn.DQN(discount=0.99, batch_size=32, min_steps_learn=50000, delta_clip=1.0, replay_size=1000000, replay_ratio=8, target_update_tau=1, target_update_interval=312, n_step_return=1, learning_rate=0.00025, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, clip_grad_norm=10.0, eps_steps=1000000, double_dqn=False, prioritized_replay=False, pri_alpha=0.6, pri_beta_init=0.4, pri_beta_final=1.0, pri_beta_steps=50000000, default_priority=None, ReplayBufferCls=None, updates_per_sync=1)

	Bases: rlpyt.algos.base.RlAlgorithm

DQN algorithm trainig from a replay buffer, with options for double-dqn, n-step
returns, and prioritized replay.

	
__init__(discount=0.99, batch_size=32, min_steps_learn=50000, delta_clip=1.0, replay_size=1000000, replay_ratio=8, target_update_tau=1, target_update_interval=312, n_step_return=1, learning_rate=0.00025, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, clip_grad_norm=10.0, eps_steps=1000000, double_dqn=False, prioritized_replay=False, pri_alpha=0.6, pri_beta_init=0.4, pri_beta_final=1.0, pri_beta_steps=50000000, default_priority=None, ReplayBufferCls=None, updates_per_sync=1)

	Saves input arguments.

delta_clip selects the Huber loss; if None, uses MSE.

replay_ratio determines the ratio of data-consumption
to data-generation. For example, original DQN sampled 4 environment steps between
each training update with batch-size 32, for a replay ratio of 8.

	
initialize(agent, n_itr, batch_spec, mid_batch_reset, examples, world_size=1, rank=0)

	Stores input arguments and initializes replay buffer and optimizer.
Use in non-async runners. Computes number of gradient updates per
optimization iteration as (replay_ratio * sampler-batch-size /
training-batch_size).

	
async_initialize(agent, sampler_n_itr, batch_spec, mid_batch_reset, examples, world_size=1)

	Used in async runner only; returns replay buffer allocated in shared
memory, does not instantiate optimizer.

	
optim_initialize(rank=0)

	Called in initilize or by async runner after forking sampler.

	
initialize_replay_buffer(examples, batch_spec, async_=False)

	Allocates replay buffer using examples and with the fields in SamplesToBuffer
namedarraytuple. Uses frame-wise buffers, so that only unique frames are stored,
using less memory (usual observations are 4 most recent frames, with only newest
frame distince from previous observation).

	
optimize_agent(itr, samples=None, sampler_itr=None)

	Extracts the needed fields from input samples and stores them in the
replay buffer. Then samples from the replay buffer to train the agent
by gradient updates (with the number of updates determined by replay
ratio, sampler batch size, and training batch size). If using prioritized
replay, updates the priorities for sampled training batches.

	
samples_to_buffer(samples)

	Defines how to add data from sampler into the replay buffer. Called
in optimize_agent() if samples are provided to that method. In
asynchronous mode, will be called in the memory_copier process.

	
loss(samples)

	Computes the Q-learning loss, based on: 0.5 * (Q - target_Q) ^ 2.
Implements regular DQN or Double-DQN for computing target_Q values
using the agent’s target network. Computes the Huber loss using
delta_clip, or if None, uses MSE. When using prioritized
replay, multiplies losses by importance sample weights.

Input samples have leading batch dimension [B,..] (but not time).

Calls the agent to compute forward pass on training inputs, and calls
agent.target() to compute target values.

Returns loss and TD-absolute-errors for use in prioritization.

Warning

If not using mid_batch_reset, the sampler will only reset environments
between iterations, so some samples in the replay buffer will be
invalid. This case is not supported here currently.

	
class rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin(eps_init=1, eps_final=0.01, eps_final_min=None, eps_itr_min=50, eps_itr_max=1000, eps_eval=0.001, *args, **kwargs)

	Mixin class to operate all epsilon-greedy agents. Includes epsilon
annealing, switching between sampling and evaluation epsilons, and
vector-valued epsilons. The agent subclass must use a compatible
epsilon-greedy distribution.

	
__init__(eps_init=1, eps_final=0.01, eps_final_min=None, eps_itr_min=50, eps_itr_max=1000, eps_eval=0.001, *args, **kwargs)

	Saves input arguments. eps_final_min other than None will use
vector-valued epsilon, log-spaced.

	
collector_initialize(global_B=1, env_ranks=None)

	For vector-valued epsilon, the agent inside the sampler worker process
must initialize with its own epsilon values.

	
make_vec_eps(global_B, env_ranks)

	Construct log-spaced epsilon values and select local assignments
from the global number of sampler environment instances (for SyncRl
and AsyncRl).

	
sample_mode(itr)

	Extend method to set epsilon for sampling (including annealing).

	
eval_mode(itr)

	Extend method to set epsilon for evaluation, using 1 for
pre-training eval.

	
class rlpyt.agents.dqn.dqn_agent.DqnAgent(eps_init=1, eps_final=0.01, eps_final_min=None, eps_itr_min=50, eps_itr_max=1000, eps_eval=0.001, *args, **kwargs)

	Bases: rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin, rlpyt.agents.base.BaseAgent

Standard agent for DQN algorithms with epsilon-greedy exploration.

	
__call__(observation, prev_action, prev_reward)

	Returns Q-values for states/observations (with grad).

	
initialize(env_spaces, share_memory=False, global_B=1, env_ranks=None)

	Along with standard initialization, creates vector-valued epsilon
for exploration, if applicable, with a different epsilon for each
environment instance.

	
step(observation, prev_action, prev_reward)

	Computes Q-values for states/observations and selects actions by
epsilon-greedy. (no grad)

	
target(observation, prev_action, prev_reward)

	Returns the target Q-values for states/observations.

	
update_target(tau=1)

	Copies the model parameters into the target model.

	
class rlpyt.models.dqn.atari_dqn_model.AtariDqnModel(image_shape, output_size, fc_sizes=512, dueling=False, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

Standard convolutional network for DQN. 2-D convolution for multiple
video frames per observation, feeding an MLP for Q-value outputs for
the action set.

	
__init__(image_shape, output_size, fc_sizes=512, dueling=False, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Instantiates the neural network according to arguments; network defaults
stored within this method.

	
forward(observation, prev_action, prev_reward)

	Compute action Q-value estimates from input state.
Infers leading dimensions of input: can be [T,B], [B], or []; provides
returns with same leading dims. Convolution layers process as [T*B,
image_shape[0], image_shape[1],…,image_shape[-1]], with T=1,B=1 when not given. Expects uint8 images in
[0,255] and converts them to float32 in [0,1] (to minimize image data
storage and transfer). Used in both sampler and in algorithm (both
via the agent).

Categorical-DQN

	
class rlpyt.algos.dqn.cat_dqn.CategoricalDQN(V_min=-10, V_max=10, **kwargs)

	Bases: rlpyt.algos.dqn.dqn.DQN

Distributional DQN with fixed probability bins for the Q-value of each
action, a.k.a. categorical.

	
__init__(V_min=-10, V_max=10, **kwargs)

	Standard __init__() plus Q-value limits; the agent configures
the number of atoms (bins).

	
loss(samples)

	Computes the Distributional Q-learning loss, based on projecting the
discounted rewards + target Q-distribution into the current Q-domain,
with cross-entropy loss.

Returns loss and KL-divergence-errors for use in prioritization.

	
class rlpyt.agents.dqn.catdqn_agent.CatDqnAgent(n_atoms=51, **kwargs)

	Bases: rlpyt.agents.dqn.dqn_agent.DqnAgent

Agent for Categorical DQN algorithm.

	
__init__(n_atoms=51, **kwargs)

	Standard init, and set the number of probability atoms (bins).

	
step(observation, prev_action, prev_reward)

	Compute the discrete distribution for the Q-value for each
action for each state/observation (no grad).

	
class rlpyt.models.dqn.atari_catdqn_model.AtariCatDqnModel(image_shape, output_size, n_atoms=51, fc_sizes=512, dueling=False, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

2D conlutional network feeding into MLP with n_atoms outputs
per action, representing a discrete probability distribution of Q-values.

	
__init__(image_shape, output_size, n_atoms=51, fc_sizes=512, dueling=False, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Instantiates the neural network according to arguments; network defaults
stored within this method.

	
forward(observation, prev_action, prev_reward)

	Returns the probability masses num_atoms x num_actions for the Q-values
for each state/observation, using softmax output nonlinearity.

Recurrent DQN (R2D1)

	
class rlpyt.algos.dqn.r2d1.R2D1(discount=0.997, batch_T=80, batch_B=64, warmup_T=40, store_rnn_state_interval=40, min_steps_learn=100000, delta_clip=None, replay_size=1000000, replay_ratio=1, target_update_interval=2500, n_step_return=5, learning_rate=0.0001, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, clip_grad_norm=80.0, eps_steps=1000000, double_dqn=True, prioritized_replay=True, pri_alpha=0.6, pri_beta_init=0.9, pri_beta_final=0.9, pri_beta_steps=50000000, pri_eta=0.9, default_priority=None, input_priorities=True, input_priority_shift=None, value_scale_eps=0.001, ReplayBufferCls=None, updates_per_sync=1)

	Bases: rlpyt.algos.dqn.dqn.DQN

Recurrent-replay DQN with options for: Double-DQN, Dueling Architecture,
n-step returns, prioritized_replay.

	
__init__(discount=0.997, batch_T=80, batch_B=64, warmup_T=40, store_rnn_state_interval=40, min_steps_learn=100000, delta_clip=None, replay_size=1000000, replay_ratio=1, target_update_interval=2500, n_step_return=5, learning_rate=0.0001, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, clip_grad_norm=80.0, eps_steps=1000000, double_dqn=True, prioritized_replay=True, pri_alpha=0.6, pri_beta_init=0.9, pri_beta_final=0.9, pri_beta_steps=50000000, pri_eta=0.9, default_priority=None, input_priorities=True, input_priority_shift=None, value_scale_eps=0.001, ReplayBufferCls=None, updates_per_sync=1)

	Saves input arguments.

	Parameters

	store_rnn_state_interval (int) – store RNN state only once this many steps, to reduce memory usage; replay sequences will only begin at the steps with stored recurrent state.

Note

Typically ran with store_rnn_state_interval equal to the sampler’s batch_T, 40. Then every 40 steps
can be the beginning of a replay sequence, and will be guaranteed to start with a valid RNN state. Only reset
the RNN state (and env) at the end of the sampler batch, so that the beginnings of episodes are trained on.

	
initialize_replay_buffer(examples, batch_spec, async_=False)

	Similar to DQN but uses replay buffers which return sequences, and
stores the agent’s recurrent state.

	
optimize_agent(itr, samples=None, sampler_itr=None)

	Similar to DQN, except allows to compute the priorities of new samples
as they enter the replay buffer (input priorities), instead of only once they are
used in training (important because the replay-ratio is quite low, about 1,
so must avoid un-informative samples).

	
compute_input_priorities(samples)

	Used when putting new samples into the replay buffer. Computes
n-step TD-errors using recorded Q-values from online network and
value scaling. Weights the max and the mean TD-error over each sequence
to make a single priority value for that sequence.

Note

Although the original R2D2 implementation used the entire
80-step sequence to compute the input priorities, we ran R2D1 with 40
time-step sample batches, and so computed the priority for each
80-step training sequence based on one of the two 40-step halves.
Algorithm argument input_priority_shift determines which 40-step
half is used as the priority for the 80-step sequence. (Since this
method might get executed by alternating memory copiers in async mode,
don’t carry internal state here, do all computation with only the samples
available in input. Could probably reduce to one memory copier and keep
state there, if needed.)

	
loss(samples)

	Samples have leading Time and Batch dimentions [T,B,..]. Move all
samples to device first, and then slice for sub-sequences. Use same
init_rnn_state for agent and target; start both at same t. Warmup the
RNN state first on the warmup subsequence, then train on the remaining
subsequence.

Returns loss (usually use MSE, not Huber), TD-error absolute values,
and new sequence-wise priorities, based on weighted sum of max and mean
TD-error over the sequence.

	
value_scale(x)

	Value scaling function to handle raw rewards across games (not clipped).

	
inv_value_scale(z)

	Invert the value scaling.

	
class rlpyt.agents.dqn.r2d1_agent.R2d1AgentBase(eps_init=1, eps_final=0.01, eps_final_min=None, eps_itr_min=50, eps_itr_max=1000, eps_eval=0.001, *args, **kwargs)

	Bases: rlpyt.agents.dqn.dqn_agent.DqnAgent

Base agent for recurrent DQN (to add recurrent mixin).

	
step(observation, prev_action, prev_reward)

	Computes Q-values for states/observations and selects actions by
epsilon-greedy (no grad). Advances RNN state.

	
class rlpyt.agents.dqn.r2d1_agent.R2d1Agent(*args, **kwargs)

	Bases: rlpyt.agents.base.RecurrentAgentMixin, rlpyt.agents.dqn.r2d1_agent.R2d1AgentBase

R2D1 agent.

	
class rlpyt.models.dqn.atari_r2d1_model.AtariR2d1Model(image_shape, output_size, fc_size=512, lstm_size=512, head_size=512, dueling=False, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

2D convolutional neural network (for multiple video frames per
observation) feeding into an LSTM and MLP output for Q-value outputs for
the action set.

	
__init__(image_shape, output_size, fc_size=512, lstm_size=512, head_size=512, dueling=False, use_maxpool=False, channels=None, kernel_sizes=None, strides=None, paddings=None)

	Instantiates the neural network according to arguments; network defaults
stored within this method.

Miscellaneous

	
class rlpyt.models.dqn.dueling.DuelingHeadModel(input_size, hidden_sizes, output_size, grad_scale=0.7071067811865476)

	Bases: sphinx.ext.autodoc.importer._MockObject

Model component for dueling DQN. For each state Q-value, uses a scalar
output for mean (bias), and vector output for relative advantages
associated with each action, so the Q-values are computed as: Mean +
(Advantages - mean(Advantages)). Uses a shared bias for all Advantage
outputs.Gradient scaling can be applied, affecting preceding layers in the
backward pass.

	
forward(input)

	Computes Q-values through value and advantage heads; applies gradient
scaling.

	
advantage(input)

	Computes shared-bias advantages.

	
class rlpyt.models.dqn.dueling.DistributionalDuelingHeadModel(input_size, hidden_sizes, output_size, n_atoms, grad_scale=0.7071067811865476)

	Bases: sphinx.ext.autodoc.importer._MockObject

Model component for Dueling Distributional (Categorical) DQN, like
DuelingHeadModel, but handles n_atoms outputs for each state-action
Q-value distribution.

	
class rlpyt.models.dqn.atari_catdqn_model.DistributionalHeadModel(input_size, layer_sizes, output_size, n_atoms)

	Bases: sphinx.ext.autodoc.importer._MockObject

An MLP head which reshapes output to [B, output_size, n_atoms].

Q-Value Policy Gradient Implementations

This page documents algorithms, agents, and models implemented for Q-value policy gradient methods. (Much of the functionality around training and replay buffers looks similar to DQN.)

Deep Deterministc Policy Gradient (DDPG)

	
class rlpyt.algos.qpg.ddpg.DDPG(discount=0.99, batch_size=64, min_steps_learn=10000, replay_size=1000000, replay_ratio=64, target_update_tau=0.01, target_update_interval=1, policy_update_interval=1, learning_rate=0.0001, q_learning_rate=0.001, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, clip_grad_norm=100000000.0, q_target_clip=1000000.0, n_step_return=1, updates_per_sync=1, bootstrap_timelimit=True, ReplayBufferCls=None)

	Bases: rlpyt.algos.base.RlAlgorithm

Deep deterministic policy gradient algorithm, training from a replay
buffer.

	
__init__(discount=0.99, batch_size=64, min_steps_learn=10000, replay_size=1000000, replay_ratio=64, target_update_tau=0.01, target_update_interval=1, policy_update_interval=1, learning_rate=0.0001, q_learning_rate=0.001, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, clip_grad_norm=100000000.0, q_target_clip=1000000.0, n_step_return=1, updates_per_sync=1, bootstrap_timelimit=True, ReplayBufferCls=None)

	Saves input arguments.

	
initialize(agent, n_itr, batch_spec, mid_batch_reset, examples, world_size=1, rank=0)

	Stores input arguments and initializes replay buffer and optimizer.
Use in non-async runners. Computes number of gradient updates per
optimization iteration as (replay_ratio * sampler-batch-size /
training-batch_size).

	
async_initialize(agent, sampler_n_itr, batch_spec, mid_batch_reset, examples, world_size=1)

	Used in async runner only; returns replay buffer allocated in shared
memory, does not instantiate optimizer.

	
optim_initialize(rank=0)

	Called in initilize or by async runner after forking sampler.

	
initialize_replay_buffer(examples, batch_spec, async_=False)

	Allocates replay buffer using examples and with the fields in SamplesToBuffer
namedarraytuple.

	
optimize_agent(itr, samples=None, sampler_itr=None)

	Extracts the needed fields from input samples and stores them in the
replay buffer. Then samples from the replay buffer to train the agent
by gradient updates (with the number of updates determined by replay
ratio, sampler batch size, and training batch size).

	
samples_to_buffer(samples)

	Defines how to add data from sampler into the replay buffer. Called
in optimize_agent() if samples are provided to that method.

	
mu_loss(samples, valid)

	Computes the mu_loss as the Q-value at that action.

	
q_loss(samples, valid)

	Constructs the n-step Q-learning loss using target Q. Input
samples have leading batch dimension [B,..] (but not time).

	
class rlpyt.agents.qpg.ddpg_agent.DdpgAgent(ModelCls=<class 'rlpyt.models.qpg.mlp.MuMlpModel'>, QModelCls=<class 'rlpyt.models.qpg.mlp.QofMuMlpModel'>, model_kwargs=None, q_model_kwargs=None, initial_model_state_dict=None, initial_q_model_state_dict=None, action_std=0.1, action_noise_clip=None)

	Bases: rlpyt.agents.base.BaseAgent

Agent for deep deterministic policy gradient algorithm.

	
__init__(ModelCls=<class 'rlpyt.models.qpg.mlp.MuMlpModel'>, QModelCls=<class 'rlpyt.models.qpg.mlp.QofMuMlpModel'>, model_kwargs=None, q_model_kwargs=None, initial_model_state_dict=None, initial_q_model_state_dict=None, action_std=0.1, action_noise_clip=None)

	Saves input arguments; default network sizes saved here.

	
initialize(env_spaces, share_memory=False, global_B=1, env_ranks=None)

	Instantiates mu and q, and target_mu and target_q models.

	
q(observation, prev_action, prev_reward, action)

	Compute Q-value for input state/observation and action (with grad).

	
q_at_mu(observation, prev_action, prev_reward)

	Compute Q-value for input state/observation, through the mu_model
(with grad).

	
target_q_at_mu(observation, prev_action, prev_reward)

	Compute target Q-value for input state/observation, through the
target mu_model.

	
step(observation, prev_action, prev_reward)

	Computes distribution parameters (mu) for state/observation,
returns (gaussian) sampled action.

	
class rlpyt.models.qpg.mlp.MuMlpModel(observation_shape, hidden_sizes, action_size, output_max=1)

	Bases: sphinx.ext.autodoc.importer._MockObject

MLP neural net for action mean (mu) output for DDPG agent.

	
__init__(observation_shape, hidden_sizes, action_size, output_max=1)

	Instantiate neural net according to inputs.

	
class rlpyt.models.qpg.mlp.QofMuMlpModel(observation_shape, hidden_sizes, action_size)

	Bases: sphinx.ext.autodoc.importer._MockObject

Q portion of the model for DDPG, an MLP.

	
__init__(observation_shape, hidden_sizes, action_size)

	Instantiate neural net according to inputs.

Twin Delayed Deep Deterministic Policy Gradient (TD3)

	
class rlpyt.algos.qpg.td3.TD3(batch_size=100, replay_ratio=100, target_update_tau=0.005, target_update_interval=2, policy_update_interval=2, mu_learning_rate=0.001, q_learning_rate=0.001, **kwargs)

	Bases: rlpyt.algos.qpg.ddpg.DDPG

Twin delayed deep deterministic policy gradient algorithm.

	
__init__(batch_size=100, replay_ratio=100, target_update_tau=0.005, target_update_interval=2, policy_update_interval=2, mu_learning_rate=0.001, q_learning_rate=0.001, **kwargs)

	Saved input arguments.

	
q_loss(samples, valid)

	Computes MSE Q-loss for twin Q-values and min of target-Q values.

	
class rlpyt.agents.qpg.td3_agent.Td3Agent(pretrain_std=0.5, target_noise_std=0.2, target_noise_clip=0.5, initial_q2_model_state_dict=None, **kwargs)

	Bases: rlpyt.agents.qpg.ddpg_agent.DdpgAgent

Agent for TD3 algorithm, using two Q-models and two target Q-models.

	
__init__(pretrain_std=0.5, target_noise_std=0.2, target_noise_clip=0.5, initial_q2_model_state_dict=None, **kwargs)

	Saves input arguments.

	
q(observation, prev_action, prev_reward, action)

	Compute twin Q-values for state/observation and input action
(with grad).

	
target_q_at_mu(observation, prev_action, prev_reward)

	Compute twin target Q-values for state/observation, through
target mu model.

Soft Actor Critic (SAC)

	
class rlpyt.algos.qpg.sac.SAC(discount=0.99, batch_size=256, min_steps_learn=10000, replay_size=1000000, replay_ratio=256, target_update_tau=0.005, target_update_interval=1, learning_rate=0.0003, fixed_alpha=None, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, action_prior='uniform', reward_scale=1, target_entropy='auto', reparameterize=True, clip_grad_norm=1000000000.0, n_step_return=1, updates_per_sync=1, bootstrap_timelimit=True, ReplayBufferCls=None)

	Bases: rlpyt.algos.base.RlAlgorithm

Soft actor critic algorithm, training from a replay buffer.

	
__init__(discount=0.99, batch_size=256, min_steps_learn=10000, replay_size=1000000, replay_ratio=256, target_update_tau=0.005, target_update_interval=1, learning_rate=0.0003, fixed_alpha=None, OptimCls=<sphinx.ext.autodoc.importer._MockObject object>, optim_kwargs=None, initial_optim_state_dict=None, action_prior='uniform', reward_scale=1, target_entropy='auto', reparameterize=True, clip_grad_norm=1000000000.0, n_step_return=1, updates_per_sync=1, bootstrap_timelimit=True, ReplayBufferCls=None)

	Save input arguments.

	
initialize(agent, n_itr, batch_spec, mid_batch_reset, examples, world_size=1, rank=0)

	Stores input arguments and initializes replay buffer and optimizer.
Use in non-async runners. Computes number of gradient updates per
optimization iteration as (replay_ratio * sampler-batch-size /
training-batch_size).

	
optim_initialize(rank=0)

	Called in initilize or by async runner after forking sampler.

	
initialize_replay_buffer(examples, batch_spec, async_=False)

	Allocates replay buffer using examples and with the fields in SamplesToBuffer
namedarraytuple.

	
optimize_agent(itr, samples=None, sampler_itr=None)

	Extracts the needed fields from input samples and stores them in the
replay buffer. Then samples from the replay buffer to train the agent
by gradient updates (with the number of updates determined by replay
ratio, sampler batch size, and training batch size).

	
samples_to_buffer(samples)

	Defines how to add data from sampler into the replay buffer. Called
in optimize_agent() if samples are provided to that method.

	
loss(samples)

	Computes losses for twin Q-values against the min of twin target Q-values
and an entropy term. Computes reparameterized policy loss, and loss for
tuning entropy weighting, alpha.

Input samples have leading batch dimension [B,..] (but not time).

	
class rlpyt.agents.qpg.sac_agent.SacAgent(ModelCls=<class 'rlpyt.models.qpg.mlp.PiMlpModel'>, QModelCls=<class 'rlpyt.models.qpg.mlp.QofMuMlpModel'>, model_kwargs=None, q_model_kwargs=None, v_model_kwargs=None, initial_model_state_dict=None, action_squash=1.0, pretrain_std=0.75)

	Bases: rlpyt.agents.base.BaseAgent

Agent for SAC algorithm, including action-squashing, using twin Q-values.

	
__init__(ModelCls=<class 'rlpyt.models.qpg.mlp.PiMlpModel'>, QModelCls=<class 'rlpyt.models.qpg.mlp.QofMuMlpModel'>, model_kwargs=None, q_model_kwargs=None, v_model_kwargs=None, initial_model_state_dict=None, action_squash=1.0, pretrain_std=0.75)

	Saves input arguments; network defaults stored within.

	
q(observation, prev_action, prev_reward, action)

	Compute twin Q-values for state/observation and input action
(with grad).

	
target_q(observation, prev_action, prev_reward, action)

	Compute twin target Q-values for state/observation and input
action.

	
pi(observation, prev_action, prev_reward)

	Compute action log-probabilities for state/observation, and
sample new action (with grad). Uses special sample_loglikelihood()
method of Gaussian distriution, which handles action squashing
through this process.

	
class rlpyt.models.qpg.mlp.PiMlpModel(observation_shape, hidden_sizes, action_size)

	Action distrubition MLP model for SAC agent.

Runners

	
class rlpyt.runners.base.BaseRunner

	Orchestrates sampler and algorithm to run the training loop. The runner
should also manage logging to record agent performance during training.
Different runner classes may be used depending on the overall RL procedure
and the hardware configuration (e.g. multi-GPU).

	
train()

	Entry point to conduct an entire RL training run, to be called in a
launch script after instantiating all components: algo, agent, sampler.

All of the existing runners implement loops which collect minibatches of samples and provide them to the algorithm. The distinguishing features of the following classes are: a) online vs offline performance logging, b) single- vs multi-GPU training, and c) synchronous vs asynchronous operation of sampling and training. Most RL workflows should be able to use the desired class without modification.

Single-GPU Runners

	
class rlpyt.runners.minibatch_rl.MinibatchRlBase(algo, agent, sampler, n_steps, seed=None, affinity=None, log_interval_steps=100000.0)

	Bases: rlpyt.runners.base.BaseRunner

Implements startup, logging, and agent checkpointing functionality, to be
called in the train() method of the subclassed runner. Subclasses will
modify/extend many of the methods here.

	Parameters

	
	algo – The algorithm instance.

	agent – The learning agent instance.

	sampler – The sampler instance.

	n_steps (int) – Total number of environment steps to run in training loop.

	seed (int) – Random seed to use, if None will generate randomly.

	affinity (dict) – Hardware component assignments for sampler and algorithm.

	log_interval_steps (int) – Number of environment steps between logging to csv.

	
startup()

	Sets hardware affinities, initializes the following: 1) sampler (which
should initialize the agent), 2) agent device and data-parallel wrapper (if applicable),
3) algorithm, 4) logger.

	
get_traj_info_kwargs()

	Pre-defines any TrajInfo attributes needed from elsewhere e.g.
algorithm discount factor.

	
get_n_itr()

	Determine number of train loop iterations to run. Converts logging
interval units from environment steps to iterations.

	
get_itr_snapshot(itr)

	Returns all state needed for full checkpoint/snapshot of training run,
including agent parameters and optimizer parameters.

	
save_itr_snapshot(itr)

	Calls the logger to save training checkpoint/snapshot (logger itself
may or may not save, depending on mode selected).

	
store_diagnostics(itr, traj_infos, opt_info)

	Store any diagnostic information from a training iteration that should
be kept for the next logging iteration.

	
log_diagnostics(itr, traj_infos=None, eval_time=0, prefix='Diagnostics/')

	Write diagnostics (including stored ones) to csv via the logger.

	
_log_infos(traj_infos=None)

	Writes trajectory info and optimizer info into csv via the logger.
Resets stored optimizer info.

	
class rlpyt.runners.minibatch_rl.MinibatchRl(log_traj_window=100, **kwargs)

	Bases: rlpyt.runners.minibatch_rl.MinibatchRlBase

Runs RL on minibatches; tracks performance online using learning
trajectories.

	
__init__(log_traj_window=100, **kwargs)

	
	Parameters

	log_traj_window (int) – How many trajectories to hold in deque for computing performance statistics.

	
train()

	Performs startup, then loops by alternating between
sampler.obtain_samples() and algo.optimize_agent(), logging
diagnostics at the specified interval.

	
class rlpyt.runners.minibatch_rl.MinibatchRlEval(algo, agent, sampler, n_steps, seed=None, affinity=None, log_interval_steps=100000.0)

	Bases: rlpyt.runners.minibatch_rl.MinibatchRlBase

Runs RL on minibatches; tracks performance offline using evaluation
trajectories.

	
train()

	Performs startup, evaluates the initial agent, then loops by
alternating between sampler.obtain_samples() and
algo.optimize_agent(). Pauses to evaluate the agent at the
specified log interval.

	
evaluate_agent(itr)

	Record offline evaluation of agent performance, by sampler.evaluate_agent().

Multi-GPU Runners

	
class rlpyt.runners.sync_rl.SyncRlMixin

	Mixin class to extend runner functionality to multi-GPU case. Creates a
full replica of the sampler-algorithm-agent stack in a separate Python
process for each GPU. Initializes torch.distributed to support
data-parallel training of the agent. The main communication point among
processes is to all-reduce gradients during backpropagation, which is
handled implicitly within PyTorch. There is one agent, with the same
parameters copied in all processes. No data samples are communicated in
the implemented runners.

On GPU, uses the NCCL backend to communicate directly among GPUs. Can also
be used without GPU, as multi-CPU (MPI-like, but using the gloo backend).

The parallelism in the sampler is independent from the parallelism
here–each process will initialize its own sampler, and any one can be
used (serial, cpu-parallel, gpu-parallel).

The name “Sync” refers to the fact that the sampler and algorithm still
operate synchronously within each process (i.e. they alternate, running
one at a time).

Note

Weak scaling is implemented for batch sizes. The batch size input
argument to the sampler and to the algorithm classes are used in each
process, so the actual batch sizes are (world_size * batch_size).
The world size is readily available from torch.distributed, so can
change this if desired.

Note

The affinities input is expected to be a list, with a seprate
affinity dict for each process. The number of processes is taken from
the length of the affinities list.

	
launch_workers()

	As part of startup, fork a separate Python process for each additional
GPU; the master process runs on the first GPU. Initialize
torch.distributed so the DistributedDataParallel wrapper can
work–also makes torch.distributed avaiable for other
communication.

	
class rlpyt.runners.sync_rl.SyncRl(log_traj_window=100, **kwargs)

	Bases: rlpyt.runners.sync_rl.SyncRlMixin, rlpyt.runners.minibatch_rl.MinibatchRl

Multi-process RL with online agent performance tracking. Trajectory info is
collected from all processes and is included in logging.

	
class rlpyt.runners.sync_rl.SyncRlEval(algo, agent, sampler, n_steps, seed=None, affinity=None, log_interval_steps=100000.0)

	Bases: rlpyt.runners.sync_rl.SyncRlMixin, rlpyt.runners.minibatch_rl.MinibatchRlEval

Multi-process RL with offline agent performance evaluation. Only the
master process runs agent evaluation.

Asynchronous Runners

	
class rlpyt.runners.async_rl.AsyncRlBase(algo, agent, sampler, n_steps, affinity, seed=None, log_interval_steps=100000.0)

	Bases: rlpyt.runners.base.BaseRunner

Runs sampling and optimization asynchronously in separate Python
processes. May be useful to achieve higher hardware utilization, e.g.
CPUs fully busy simulating the environment while GPU fully busy training
the agent (there’s no reason to use this CPU-only). This setup is
significantly more complicated than the synchronous (single- or multi-GPU)
runners, requires use of the asynchronous sampler, and may require special
methods in the algorithm.

Further parallelization within the sampler and optimizer are independent.
The asynchronous sampler can be serial, cpu-parallel, gpu-parallel, or
multi-gpu-parallel. The optimizer can be single- or multi-gpu.

The algorithm must initialize a replay buffer on OS shared memory. The
asynchronous sampler will allocate minibatch buffers on OS shared memory,
and yet another Python process is run to copy the completed minibatches
over to the algorithm’s replay buffer. While that memory copy is
underway, the sampler immediately begins gathering the next minibatch.

Care should be taken to balance the rate at which the algorithm runs against
the rate of the sampler, as this can affect learning performance. In the existing
implementations, the sampler runs at full speed, and the algorithm may be throttled
not to exceed the specified relative rate. This is set by the algorithm’s replay_ratio,
which becomes the upper bound on the amount of training samples used in ratio with
the amount of samples generated. (In synchronous mode, the replay ratio is enforced
more precisely by running a fixed batch size and number of updates per iteration.)

The master process runs the (first) training GPU and performs all logging.

Within the optimizer, one agent exists. If multi-GPU, the same parameter
values are copied across all GPUs, and PyTorch’s DistributedDataParallel
is used to all-reduce gradients (as in the synchronous multi-GPU runners).
Within the sampler, one agent exists. If new agent parameters are
available from the optimizer between sampler minibatches, then those
values are copied into the sampler before gathering the next minibatch.

Note

The affinity argument should be a structure with sampler and
optimizer attributes holding the respective hardware allocations.
Optimizer and sampler parallelization is determined from this.

	
train()

	Run the optimizer in a loop. Check whether enough new samples have
been generated, and throttle down if necessary at each iteration. Log
at an interval in the number of sampler iterations, not optimizer
iterations.

	
startup()

	Calls sampler.async_initialize() to get a double buffer for minibatches,
followed by algo.async_initialize() to get a replay buffer on shared memory,
then launches all workers (sampler, optimizer, memory copier).

	
optim_startup()

	Sets the hardware affinity, moves the agent’s model parameters onto
device and initialize data-parallel agent, if applicable. Computes
optimizer throttling settings.

	
build_ctrl(world_size)

	Builds several parallel communication mechanisms for controlling the
workflow across processes.

	
launch_optimizer_workers(n_itr)

	If multi-GPU optimization, launches an optimizer worker for each GPU
and initializes torch.distributed.

	
launch_memcpy(sample_buffers, replay_buffer)

	Fork a Python process for each of the sampler double buffers. (It may
be overkill to use two separate processes here, may be able to simplify
to one and still get good performance.)

	
class rlpyt.runners.async_rl.AsyncRl(*args, log_traj_window=100, **kwargs)

	Bases: rlpyt.runners.async_rl.AsyncRlBase

Asynchronous RL with online agent performance tracking.

	
class rlpyt.runners.async_rl.AsyncRlEval(algo, agent, sampler, n_steps, affinity, seed=None, log_interval_steps=100000.0)

	Bases: rlpyt.runners.async_rl.AsyncRlBase

Asynchronous RL with offline agent performance evaluation.

Asynchronous Worker Processes

	
rlpyt.runners.async_rl.run_async_sampler(sampler, affinity, ctrl, traj_infos_queue, n_itr)

	Target function for the process which will run the sampler, in the case of
online performance logging. Toggles the sampler’s double-buffer for each
iteration, waits for the memory copier to finish before writing into that
buffer, and signals the memory copier when the sampler is done writing a
minibatch.

	
rlpyt.runners.async_rl.run_async_sampler_eval(sampler, affinity, ctrl, traj_infos_queue, n_itr, eval_itrs)

	Target function running the sampler with offline performance evaluation.

	
rlpyt.runners.async_rl.memory_copier(sample_buffer, samples_to_buffer, replay_buffer, ctrl)

	Target function for the process which will copy the sampler’s minibatch buffer
into the algorithm’s main replay buffer.

	Parameters

	
	sample_buffer – The (single) minibatch buffer from the sampler, on shared memory.

	samples_to_buffer – A function/method from the algorithm to process samples from the minibatch buffer into the replay buffer (e.g. select which fields, compute some prioritization).

	replay_buffer – Algorithm’s main replay buffer, on shared memory.

	ctrl – Structure for communicating when the minibatch is ready to copy/done copying.

Warning

Although this function may use the algorithm’s samples_to_buffer()
method, here it is running in a separate process, so will not be aware
of changes in the algorithm from the optimizer process. Furthermore,
it may not be able to store state across iterations–in the
implemented setup, two separate memory copier processes are used, so
each one only sees every other minibatch. (Could easily change to
single copier if desired, and probably without peformance loss.)

Samplers

Several sampler classes are implemented for different parallelization schemes, with multiple environment instances running on CPU resources and agent forward passes happening on either CPU or GPU. The implemented samplers execute a fixed number of time-steps at each call to obtain_samples(), which returns a batch of data with leading dimensions [batch_T, batch_B].

Something about choosing which sampler based on parallel needs/availability, and different for each case, but try them out.

	
class rlpyt.samplers.base.BaseSampler(EnvCls, env_kwargs, batch_T, batch_B, CollectorCls, max_decorrelation_steps=100, TrajInfoCls=<class 'rlpyt.samplers.collections.TrajInfo'>, eval_n_envs=0, eval_CollectorCls=None, eval_env_kwargs=None, eval_max_steps=None, eval_max_trajectories=None)

	Class which interfaces with the Runner, in master process only.

	Parameters

	
	EnvCls – class (or factory function) callable to instantiate an environment object

	env_kwargs (dict) – keyword arguments passed to EnvCls() to instantiate

	batch_T (int) – number of time-steps per sample batch

	batch_B (int) – number of environment instances to run (in parallel), becomes second batch dimension

	CollectorCls – callable to instantiate the collector, which manages agent-environment interaction loop

	max_decorrelation_steps (int) – if taking random number of steps before start of training, to decorrelate batch states

	TrajInfoCls – callable to instantiate object for tracking trajectory-wise info

	eval_n_envs (int) – number of environment instances for agent evaluation (0 for no separate evaluation)

	eval_CollectorCls – callable to instantiate evaluation collector

	eval_env_kwargs – keyword arguments passed to EnvCls() for eval envs

	eval_max_steps – max total number of steps (time * n_envs) per evaluation call

	eval_max_trajectories – optional earlier cutoff for evaluation phase

	
initialize(*args, **kwargs)

	Should instantiate all components, including setup of parallel
process if applicable.

	
obtain_samples(itr)

	Execute agent-environment interactions and return data batch.

	
evaluate_agent(itr)

	Run offline agent evaluation, if applicable.

Serial Sampler

	
class rlpyt.samplers.serial.sampler.SerialSampler(*args, CollectorCls=<class 'rlpyt.samplers.parallel.cpu.collectors.CpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.serial.collectors.SerialEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.base.BaseSampler

The simplest sampler; no parallelism, everything occurs in same, master
Python process. This can be easier for debugging (e.g. can use
breakpoint() in master process) and might be fast enough for
experiment purposes. Should be used with collectors which generate the
agent’s actions internally, i.e. CPU-based collectors but not GPU-based
ones.

	
initialize(agent, affinity=None, seed=None, bootstrap_value=False, traj_info_kwargs=None, rank=0, world_size=1)

	Store the input arguments. Instantiate the specified number of environment
instances (batch_B). Initialize the agent, and pre-allocate a memory buffer
to hold the samples collected in each batch. Applies traj_info_kwargs settings
to the TrajInfoCls by direct class attribute assignment. Instantiates the Collector
and, if applicable, the evaluation Collector.

Returns a structure of inidividual examples for data fields such as observation,
action, etc, which can be used to allocate a replay buffer.

	
obtain_samples(itr)

	Call the collector to execute a batch of agent-environment interactions.
Return data in torch tensors, and a list of trajectory-info objects from
episodes which ended.

	
evaluate_agent(itr)

	Call the evaluation collector to execute agent-environment interactions.

Parallel Samplers

	
class rlpyt.samplers.parallel.base.ParallelSamplerBase(EnvCls, env_kwargs, batch_T, batch_B, CollectorCls, max_decorrelation_steps=100, TrajInfoCls=<class 'rlpyt.samplers.collections.TrajInfo'>, eval_n_envs=0, eval_CollectorCls=None, eval_env_kwargs=None, eval_max_steps=None, eval_max_trajectories=None)

	Bases: rlpyt.samplers.base.BaseSampler

Base class for samplers which use worker processes to run environment
steps in parallel, across CPU resources.

	
initialize(agent, affinity, seed, bootstrap_value=False, traj_info_kwargs=None, world_size=1, rank=0, worker_process=None)

	Creates an example instance of the environment for agent initialization
(which may differ by sub-class) and to pre-allocate batch buffers, then deletes
the environment instance. Batch buffers are allocated on shared memory, so
that worker processes can read/write directly to them.

Computes the number of parallel processes based on the affinity
argument. Forks worker processes, which instantiate their own environment
and collector objects. Waits for the worker process to complete all initialization
(such as decorrelating environment states) before returning. Barriers and other
parallel indicators are constructed to manage worker processes.

Warning

If doing offline agent evaluation, will use at least one evaluation environment
instance per parallel worker, which might increase the total
number of evaluation instances over what was requested. This may
result in bias towards shorter episodes if the episode length is
variable, and if the max number of evalution steps divided over the
number of eval environments (eval_max_steps /
actual_eval_n_envs), is not large relative to the max episode
length.

	
obtain_samples(itr)

	Signal worker processes to collect samples, and wait until they
finish. Workers will write directly to the pre-allocated samples
buffer, which this method returns. Trajectory-info objects from
completed trajectories are retrieved from workers through a parallel
queue object and are also returned.

	
evaluate_agent(itr)

	Signal worker processes to perform agent evaluation. If a max
number of evaluation trajectories was specified, keep watch over the
number of trajectories finished and signal an early end if the limit
is reached. Return a list of trajectory-info objects from the
completed episodes.

CPU-Agent

	
class rlpyt.samplers.parallel.cpu.sampler.CpuSampler(*args, CollectorCls=<class 'rlpyt.samplers.parallel.cpu.collectors.CpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.parallel.cpu.collectors.CpuEvalCollector'>, **kwargs)

	Parallel sampler for using the CPU resource of each worker to
compute agent forward passes; for use with CPU-based collectors.

	
obtain_samples(itr)

	First, have the agent sync shared memory; in case training uses a
GPU, the agent needs to copy its (new) GPU model parameters to the
shared-memory CPU model which all the workers use. Then call super
class’s method.

	
evaluate_agent(itr)

	Like in obtain_samples(), first sync agent shared memory.

GPU-Agent

	
class rlpyt.samplers.parallel.gpu.sampler.GpuSamplerBase(*args, CollectorCls=<class 'rlpyt.samplers.parallel.gpu.collectors.GpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.parallel.gpu.collectors.GpuEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.parallel.base.ParallelSamplerBase

Base class for parallel samplers which use worker processes to execute
environment steps on CPU resources but the master process to execute agent
forward passes for action selection, presumably on GPU. Use GPU-based
collecter classes.

In addition to the usual batch buffer for data samples, allocates a step
buffer over shared memory, which is used for communication with workers.
The step buffer includes observations, which the workers write and the
master reads, and actions, which the master write and the workers read.
(The step buffer has leading dimension [batch_B], for the number of
parallel environments, and each worker gets its own slice along that
dimension.) The step buffer object is held in both numpy array and torch
tensor forms over the same memory; e.g. workers write to the numpy array
form, and the agent is able to read the torch tensor form.

(Possibly more information about how the stepping works, but write
in action-server or smwr like that.)

	
obtain_samples(itr)

	Signals worker to begin environment step execution loop, and drops
into serve_actions() method to provide actions to workers based on
the new observations at each step.

	
evaluate_agent(itr)

	Signals workers to begin agent evaluation loop, and drops into
serve_actions_evaluation() to provide actions to workers at each
step.

	
_agent_init(agent, env, global_B=1, env_ranks=None)

	Initializes the agent, having it not share memory, because all
agent functions (training and sampling) happen in the master process,
presumably on GPU.

	
class rlpyt.samplers.parallel.gpu.action_server.ActionServer

	Mixin class with methods for serving actions to worker processes which execute
environment steps.

	
serve_actions(itr)

	Called in master process during obtain_samples().

Performs agent action- selection loop in concert with workers
executing environment steps. Uses shared memory buffers to
communicate agent/environment data at each time step. Uses semaphores
for synchronization: one per worker to acquire when they finish
writing the next step of observations, one per worker to release when
master has written the next actions. Resets the agent one B-index at a time when the
corresponding environment resets (i.e. agent’s recurrent state, with
leading dimension batch_B).

Also communicates agent_info to workers, which are responsible
for recording all data into the batch buffer.

If requested, collects additional agent value estimation of final
observation for bootstrapping (the one thing written to the batch
buffer here).

Warning

If trying to modify, must be careful to keep correct logic of the semaphores,
to make sure they drain properly. If a semaphore ends up with an extra release,
synchronization can be lost silently, leading to wrong and confusing results.

	
serve_actions_evaluation(itr)

	Similar to serve_actions(). If a maximum number of eval trajectories
was specified, keeps track of the number completed and terminates evaluation
if the max is reached. Returns a list of completed trajectory-info objects.

	
class rlpyt.samplers.parallel.gpu.sampler.GpuSampler(*args, CollectorCls=<class 'rlpyt.samplers.parallel.gpu.collectors.GpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.parallel.gpu.collectors.GpuEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.parallel.gpu.action_server.ActionServer, rlpyt.samplers.parallel.gpu.sampler.GpuSamplerBase

GPU-Agent, Alternating Workers

	
class rlpyt.samplers.parallel.gpu.alternating_sampler.AlternatingSamplerBase(*args, **kwargs)

	Twice the standard number of worker processes are forked, and they may
share CPU resources in pairs. Environment instances are divided evenly
among the two sets. While one set of workers steps their environments,
the action-server process computes the actions for the other set of
workers, which are paused until their new actions are ready (this pause
happens in the GpuSampler). The two sets of workers alternate in this
procedure, keeping the CPU maximally busy. The intention is to hide the
time to compute actions from the critical path of execution, which can
provide up to a 2x speed boost in theory, if the environment-step time and
agent-step time were othewise equal.

If the latency in computing and returning the agent’s action is longer
than environment stepping, then this alternation might not be faster,
because it calls agent action selection twice as many times.

	
initialize(agent, *args, **kwargs)

	Like the super class’s initialize(), but creates additional set of
synchronization and communication objects for the alternate workers.

	
class rlpyt.samplers.parallel.gpu.action_server.AlternatingActionServer

	Mixin class for serving actions in the alternating GPU sampler. The
synchronization format in this class allows the two worker groups to
execute partially simultaneously; workers wait to step for their new
action to be ready but do not wait for the other set of workers to be done
stepping.

	
class rlpyt.samplers.parallel.gpu.action_server.NoOverlapAlternatingActionServer

	Mixin class for serving actions in the alternating GPU sampler. The
synchronization format in this class disallows the two worker groups from
executing simultaneously; workers wait to step for their new action to be
ready and also wait for the other set of workers to be done stepping.

Warning

Not sure the logic around semaphores is correct for all cases at the end of
serve_actions_evaluation() (see TODO comment).

	
class rlpyt.samplers.parallel.gpu.alternating_sampler.AlternatingSampler(*args, **kwargs)

	Bases: rlpyt.samplers.parallel.gpu.action_server.AlternatingActionServer, rlpyt.samplers.parallel.gpu.alternating_sampler.AlternatingSamplerBase

	
class rlpyt.samplers.parallel.gpu.alternating_sampler.NoOverlapAlternatingSampler(*args, **kwargs)

	Bases: rlpyt.samplers.parallel.gpu.action_server.NoOverlapAlternatingActionServer, rlpyt.samplers.parallel.gpu.alternating_sampler.AlternatingSamplerBase

Parallel Sampler Worker

The same function is used as the target for forking worker processes in all parallel samplers.

	
rlpyt.samplers.parallel.worker.sampling_process(common_kwargs, worker_kwargs)

	Target function used for forking parallel worker processes in the
samplers. After initialize_worker(), it creates the specified number
of environment instances and gives them to the collector when
instantiating it. It then calls collector startup methods for
environments and agent. If applicable, instantiates evaluation
environment instances and evaluation collector.

Then enters infinite loop, waiting for signals from master to collect
training samples or else run evaluation, until signaled to exit.

	
rlpyt.samplers.parallel.worker.initialize_worker(rank, seed=None, cpu=None, torch_threads=None)

	Assign CPU affinity, set random seed, set torch_threads if needed to
prevent MKL deadlock.

Asynchronous Samplers

Separate sampler classes are needed for asynchronous sampling-optimization mode, and they closely match the options for the other samplers. In asynchronous mode, the sampler will run in a separate process forked from the main (training) process. Parallel asynchronous samplers will fork additional processes.

Base Components

	
class rlpyt.samplers.async_.base.AsyncSamplerMixin

	Mixin class defining master runner initialization method for all
asynchronous samplers.

	
async_initialize(agent, bootstrap_value=False, traj_info_kwargs=None, seed=None)

	Instantiate an example environment and use it to initialize the
agent (on shared memory). Pre-allocate a double-buffer for sample
batches, and return that buffer along with example data (e.g.
observation, action, etc.)

	
class rlpyt.samplers.async_.base.AsyncParallelSamplerMixin

	Bases: rlpyt.samplers.async_.base.AsyncSamplerMixin

Mixin class defining methods for the asynchronous sampler main process
(which is forked from the overall master process).

	
obtain_samples(itr, db_idx)

	Communicates to workers which batch buffer to use, and signals them
to start collection. Waits until workers finish, and then retrieves
completed trajectory-info objects from the workers and returns them in
a list.

Serial

	
class rlpyt.samplers.async_.serial_sampler.AsyncSerialSampler(*args, CollectorCls=<class 'rlpyt.samplers.async_.collectors.DbCpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.serial.collectors.SerialEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.async_.base.AsyncSamplerMixin, rlpyt.samplers.base.BaseSampler

Sampler which runs asynchronously in a python process forked from the
master (training) process, but with no further parallelism.

	
initialize(affinity)

	Initialization inside the main sampler process. Sets process hardware
affinities, creates specified number of environment instances and instantiates
the collector with them. If applicable, does the same for evaluation
environment instances. Moves the agent to device (could be GPU), and
calls on agent.async_cpu() initialization. Starts up collector.

	
obtain_samples(itr, db_idx)

	First calls the agent to retrieve new parameter values from the
training process’s agent. Then passes the double-buffer index to the
collector and collects training sample batch. Returns list of
completed trajectory-info objects.

	
evaluate_agent(itr)

	First calls the agent to retrieve new parameter values from
the training process’s agent.

CPU-Agent

	
class rlpyt.samplers.async_.cpu_sampler.AsyncCpuSampler(*args, CollectorCls=<class 'rlpyt.samplers.async_.collectors.DbCpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.parallel.cpu.collectors.CpuEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.async_.base.AsyncParallelSamplerMixin, rlpyt.samplers.parallel.base.ParallelSamplerBase

Parallel sampler for agent action-selection on CPU, to use in
asynchronous runner. The master (training) process will have forked
the main sampler process, which here will fork sampler workers from
itself, and otherwise will run similarly to the CpuSampler.

	
initialize(affinity)

	Runs inside the main sampler process. Sets process hardware affinity
and calls the agent.async_cpu() initialization. Then proceeds with
usual parallel sampler initialization.

	
obtain_samples(itr, db_idx)

	Calls the agent to retrieve new parameter values from the training
process, then proceeds with base async parallel method.

	
evaluate_agent(itr)

	Calls the agent to retrieve new parameter values from the training
process, then proceeds with base async parallel method.

GPU-Agent

Main Class

	
class rlpyt.samplers.async_.gpu_sampler.AsyncGpuSampler(*args, CollectorCls=<class 'rlpyt.samplers.async_.collectors.DbGpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.parallel.gpu.collectors.GpuEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.async_.action_server.AsyncActionServer, rlpyt.samplers.async_.gpu_sampler.AsyncGpuSamplerBase

Component Definitions

	
class rlpyt.samplers.async_.gpu_sampler.AsyncGpuSamplerBase(*args, CollectorCls=<class 'rlpyt.samplers.async_.collectors.DbGpuResetCollector'>, eval_CollectorCls=<class 'rlpyt.samplers.parallel.gpu.collectors.GpuEvalCollector'>, **kwargs)

	Bases: rlpyt.samplers.async_.base.AsyncParallelSamplerMixin, rlpyt.samplers.parallel.base.ParallelSamplerBase

Main definitions for asynchronous parallel sampler using GPU(s) for
action selection. The main sampler process (forked from the overall
master), forks action-server processes, one per GPU to be used, and
the action-server process(es) fork their own parallel CPU workers.
This same sampler object is used in the main sampler process and in
the action server process(es), but for different methods, labeled by
comments in the code (easier way to pass arguments along).

	
initialize(affinity)

	Initialization inside the main sampler process. Builds one level
of parallel synchronization objects, and forks action-server processes,
one per GPU to be used.

	
action_server_process(rank, env_ranks, double_buffer_slice, affinity, seed, n_envs_list)

	Target method used for forking action-server process(es) from the
main sampler process. By inheriting the sampler object from the
sampler process, can more easily pass args to the environment worker
processes, which are forked from here.

Assigns hardware affinity, and then forks parallel worker processes
and moves agent model to device. Then enters infinite loop: waits for
signals from main sampler process to collect training samples or
perform evaluation, and then serves actions during collection. At
every loop, calls agent to retrieve new parameter values from the
training process, which are communicated through shared CPU memory.

	
class rlpyt.samplers.async_.action_server.AsyncActionServer

	Bases: rlpyt.samplers.parallel.gpu.action_server.ActionServer

	
serve_actions_evaluation(itr)

	Similar to normal action-server, but with different signaling logic
for ending evaluation early; receive signal from main sampler process
and pass it along to my workers.

GPU-Agent, Alternating Workers

Main Classes

	
class rlpyt.samplers.async_.alternating_sampler.AsyncAlternatingSampler(*args, **kwargs)

	Bases: rlpyt.samplers.async_.action_server.AsyncAlternatingActionServer, rlpyt.samplers.async_.alternating_sampler.AsyncAlternatingSamplerBase

	
class rlpyt.samplers.async_.alternating_sampler.AsyncNoOverlapAlternatingSampler(*args, **kwargs)

	Bases: rlpyt.samplers.async_.action_server.AsyncNoOverlapAlternatingActionServer, rlpyt.samplers.async_.alternating_sampler.AsyncAlternatingSamplerBase

Component Definitions

	
class rlpyt.samplers.async_.alternating_sampler.AsyncAlternatingSamplerBase(*args, **kwargs)

	Bases: rlpyt.samplers.async_.gpu_sampler.AsyncGpuSamplerBase

Defines several methods to extend the asynchronous GPU sampler to use
two alternating sets of environment workers.

	
class rlpyt.samplers.async_.action_server.AsyncAlternatingActionServer

	Bases: rlpyt.samplers.parallel.gpu.action_server.AlternatingActionServer

	
serve_actions_evaluation(itr)

	Similar to normal action-server, but with different signaling logic
for ending evaluation early; receive signal from main sampler process
and pass it along to my workers.

	
class rlpyt.samplers.async_.action_server.AsyncNoOverlapAlternatingActionServer

	Bases: rlpyt.samplers.parallel.gpu.action_server.NoOverlapAlternatingActionServer

Not tested, possibly faulty corner cases for synchronization.

	
serve_actions_evaluation(itr)

	Similar to normal action-server, but with different signaling logic
for ending evaluation early; receive signal from main sampler process
and pass it along to my workers.

Collectors

Collectors run the environment-agent interaction loop and record sampled data to the batch buffer. The serial sampler runs one collector, and in parallel samplers, each worker process runs one collector. Different collectors are needed for CPU-agent vs GPU-agent samplers.

In general, collectors will execute a for loop over time steps, and and inner for loop over environments, and step each environment one at a time. At every step, all information (e.g. observation, env_info, etc.) is recorded to its place in the pre-allocated batch buffer. All information is also fed to the trajectory-info object for each environment, for tracking trajectory-wise measures.

Evaluation collectors only record trajectory-wise results.

Training Collectors

Base Components

	
class rlpyt.samplers.collectors.BaseCollector(rank, envs, samples_np, batch_T, TrajInfoCls, agent=None, sync=None, step_buffer_np=None, global_B=1, env_ranks=None)

	Class that steps environments, possibly in worker process.

	
start_envs()

	e.g. calls reset() on every env.

	
start_agent()

	In CPU-collectors, call agent.collector_initialize() e.g. to set up
vector epsilon-greedy, and reset the agent.

	
collect_batch(agent_inputs, traj_infos)

	Main data collection loop.

	
reset_if_needed(agent_inputs)

	Reset agent and or env as needed, if doing between batches.

	
class rlpyt.samplers.collectors.DecorrelatingStartCollector(rank, envs, samples_np, batch_T, TrajInfoCls, agent=None, sync=None, step_buffer_np=None, global_B=1, env_ranks=None)

	Bases: rlpyt.samplers.collectors.BaseCollector

Collector which can step all environments through a random number of random
actions during startup, to decorrelate the states in training batches.

	
start_envs(max_decorrelation_steps=0)

	Calls reset() on every environment instance, then steps each
one through a random number of random actions, and returns the
resulting agent_inputs buffer (observation, prev_action,
prev_reward).

CPU-Agent Collectors

	
class rlpyt.samplers.parallel.cpu.collectors.CpuResetCollector(rank, envs, samples_np, batch_T, TrajInfoCls, agent=None, sync=None, step_buffer_np=None, global_B=1, env_ranks=None)

	Bases: rlpyt.samplers.collectors.DecorrelatingStartCollector

Collector which executes agent.step() in the sampling loop (i.e.
use in CPU or serial samplers.)

It immediately resets any environment which finishes an episode. This is
typically indicated by the environment returning done=True. But this
collector defers to the done signal only after looking for
env_info["traj_done"], so that RL episodes can end without a call to
env_reset() (e.g. used for episodic lives in the Atari env). The
agent gets reset based solely on done.

	
class rlpyt.samplers.parallel.cpu.collectors.CpuWaitResetCollector(*args, **kwargs)

	Bases: rlpyt.samplers.collectors.DecorrelatingStartCollector

Collector which executes agent.step() in the sampling loop.

It waits to reset any environments with completed episodes until after
the end of collecting the batch, i.e. the done environment is bypassed
in remaining timesteps, and zeros are recorded into the batch buffer.

Waiting to reset can be beneficial for two reasons. One is for training
recurrent agents; PyTorch’s built-in LSTM cannot reset in the middle of a
training sequence, so any samples in a batch after a reset would be
ignored and the beginning of new episodes would be missed in training.
The other reason is if the environment’s reset function is very slow
compared to its step function; it can be faster overall to leave invalid
samples after a reset, and perform the environment resets in the workers
while the master process is training the agent (this was true for massively
parallelized Atari).

GPU-Agent Collectors

	
class rlpyt.samplers.parallel.gpu.collectors.GpuResetCollector(rank, envs, samples_np, batch_T, TrajInfoCls, agent=None, sync=None, step_buffer_np=None, global_B=1, env_ranks=None)

	Bases: rlpyt.samplers.collectors.DecorrelatingStartCollector

Collector which communicates observations to an action-server, which in
turn provides the agent’s actions (i.e. use in GPU samplers).

Environment reset logic is the same as in CpuResetCollector.

	
class rlpyt.samplers.parallel.gpu.collectors.GpuWaitResetCollector(*args, **kwargs)

	Bases: rlpyt.samplers.collectors.DecorrelatingStartCollector

Collector which communicates observations to an action-server, which in
turn provides the agent’s actions (i.e. use in GPU samplers).

Environment reset logic is the same as in CpuWaitResetCollector.

Evaluation Collectors

	
class rlpyt.samplers.collectors.BaseEvalCollector(rank, envs, TrajInfoCls, traj_infos_queue, max_T, agent=None, sync=None, step_buffer_np=None)

	Collectors for offline agent evalution; not to record intermediate samples.

	
collect_evaluation()

	Run agent evaluation in environment and return completed trajectory
infos.

	
class rlpyt.samplers.parallel.cpu.collectors.CpuEvalCollector(rank, envs, TrajInfoCls, traj_infos_queue, max_T, agent=None, sync=None, step_buffer_np=None)

	Bases: rlpyt.samplers.collectors.BaseEvalCollector

Offline agent evaluation collector which calls agent.step() in
sampling loop. Immediately resets any environment which finishes a
trajectory. Stops when the max time-steps have been reached, or when
signaled by the master process (i.e. if enough trajectories have
completed).

	
class rlpyt.samplers.parallel.gpu.collectors.GpuEvalCollector(rank, envs, TrajInfoCls, traj_infos_queue, max_T, agent=None, sync=None, step_buffer_np=None)

	Bases: rlpyt.samplers.collectors.BaseEvalCollector

Offline agent evaluation collector which communicates observations
to an action-server, which in turn provides the agent’s actions.

Distributions

Distributions are used to select randomized actions during sampling, and for some algorithms to compute likelihood and related values for training. Typically, the distribution is owned by the agent. This page documents the implemented distributions and some methods–see the code for details.

	
class rlpyt.distributions.base.Distribution

	Base distribution class. Not all subclasses will impelement all
methods.

	
sample(dist_info)

	Generate random sample(s) from distribution informations.

	
kl(old_dist_info, new_dist_info)

	Compute the KL divergence of two distributions at each datum; should
maintain leading dimensions (e.g. [T,B]).

	
mean_kl(old_dist_info, new_dist_info, valid)

	Compute the mean KL divergence over a data batch, possible ignoring data
marked as invalid.

	
log_likelihood(x, dist_info)

	Compute log-likelihood of samples x at distributions described in
dist_info (i.e. can have same leading dimensions [T, B]).

	
likelihood_ratio(x, old_dist_info, new_dist_info)

	Compute likelihood ratio of samples x at new distributions over
old distributions (usually new_dist_info is variable for
differentiation); should maintain leading dimensions.

	
entropy(dist_info)

	Compute entropy of distributions contained in dist_info; should
maintain any leading dimensions.

	
perplexity(dist_info)

	Exponential of the entropy, maybe useful for logging.

	
mean_entropy(dist_info, valid=None)

	In case some sophisticated mean is needed (e.g. internally
ignoring select parts of action space), can override.

	
mean_perplexity(dist_info, valid=None)

	Exponential of the entropy, maybe useful for logging.

	
class rlpyt.distributions.discrete.DiscreteMixin(dim, dtype=<sphinx.ext.autodoc.importer._MockObject object>, onehot_dtype=<sphinx.ext.autodoc.importer._MockObject object>)

	Conversions to and from one-hot.

	
to_onehot(indexes, dtype=None)

	Convert from integer indexes to one-hot, preserving leading dimensions.

	
from_onehot(onehot, dtype=None)

	Convert from one-hot to integer indexes, preserving leading dimensions.

	
class rlpyt.distributions.categorical.Categorical(dim, dtype=<sphinx.ext.autodoc.importer._MockObject object>, onehot_dtype=<sphinx.ext.autodoc.importer._MockObject object>)

	Bases: rlpyt.distributions.discrete.DiscreteMixin, rlpyt.distributions.base.Distribution

Multinomial distribution over a discrete domain.

	
sample(dist_info)

	Sample from torch.multiomial over trailing dimension of
dist_info.prob.

	
class rlpyt.distributions.epsilon_greedy.EpsilonGreedy(epsilon=1, **kwargs)

	Bases: rlpyt.distributions.discrete.DiscreteMixin, rlpyt.distributions.base.Distribution

For epsilon-greedy exploration from state-action Q-values.

	
sample(q)

	Input can be shaped [T,B,Q] or [B,Q], and vector epsilon of length
B will apply across the Batch dimension (same epsilon for all T).

	
set_epsilon(epsilon)

	Assign value for epsilon (can be vector).

	
class rlpyt.distributions.epsilon_greedy.CategoricalEpsilonGreedy(z=None, **kwargs)

	Bases: rlpyt.distributions.epsilon_greedy.EpsilonGreedy

For epsilon-greedy exploration from distributional (categorical)
representation of state-action Q-values.

	
sample(p, z=None)

	Input p to be shaped [T,B,A,P] or [B,A,P], A: number of actions, P:
number of atoms. Optional input z is domain of atom-values, shaped
[P]. Vector epsilon of lenght B will apply across Batch dimension.

	
set_z(z)

	Assign vector of bin locations, distributional domain.

	
class rlpyt.distributions.gaussian.Gaussian(dim, std=None, clip=None, noise_clip=None, min_std=None, max_std=None, squash=None)

	Multivariate Gaussian with independent variables (diagonal covariance).
Standard deviation can be provided, as scalar or value per dimension, or it
will be drawn from the dist_info (possibly learnable), where it is expected
to have a value per each dimension.
Noise clipping or sample clipping optional during sampling, but not
accounted for in formulas (e.g. entropy).
Clipping of standard deviation optional and accounted in formulas.
Squashing of samples to squash * tanh(sample) is optional and accounted for
in log_likelihood formula but not entropy.

	
entropy(dist_info)

	Uses self.std unless that is None, then will get log_std from dist_info. Not
implemented for squashing.

	
log_likelihood(x, dist_info)

	Uses self.std unless that is None, then uses log_std from dist_info.
When squashing: instead of numerically risky arctanh, assume param
‘x’ is pre-squash action, see sample_loglikelihood() below.

	
sample_loglikelihood(dist_info)

	Special method for use with SAC algorithm, which returns a new sampled
action and its log-likelihood for training use. Temporarily turns OFF
squashing, so that log_likelihood can be computed on non-squashed sample,
and then restores squashing and applies it to the sample before output.

	
sample(dist_info)

	Generate random samples using torch.normal, from
dist_info.mean. Uses self.std unless it is None, then uses
dist_info.log_std.

	
set_clip(clip)

	Input value or None to turn OFF.

	
set_squash(squash)

	Input multiplicative factor for squash * tanh(sample) (usually
will be 1), or None to turn OFF.

	
set_noise_clip(noise_clip)

	Input value or None to turn OFF.

	
set_std(std)

	Input value, which can be same shape as action space, or else broadcastable
up to that shape, or None to turn OFF and use dist_info.log_std in
other methods.

Spaces

Spaces are used to specify the interfaces from the environment to the agent (model); the describe the observations and actions.

	
class rlpyt.spaces.base.Space

	Common definitions for observations and actions.

	
sample()

	Uniformly randomly sample a random element of this space.

	
null_value()

	Return a null value used to fill for absence of element.

	
class rlpyt.spaces.int_box.IntBox(low, high, shape=None, dtype='int32', null_value=None)

	Bases: rlpyt.spaces.base.Space

A box in J^n, with specificiable bound and dtype.

	
__init__(low, high, shape=None, dtype='int32', null_value=None)

	Params low and high are scalars, applied across all dimensions
of shape; valid values will be those in range(low, high).

	
sample()

	Return a single sample from np.random.randint.

	
n

	The number of elements in the space.

	
class rlpyt.spaces.float_box.FloatBox(low, high, shape=None, null_value=0.0, dtype='float32')

	Bases: rlpyt.spaces.base.Space

A box in R^n, with specifiable bounds and dtype.

	
__init__(low, high, shape=None, null_value=0.0, dtype='float32')

	
	Two kinds of valid input:

	
	low and high are scalars, and shape is provided: Box(-1.0, 1.0, (3,4))

	low and high are arrays of the same shape: Box(np.array([-1.0,-2.0]), np.array([2.0,4.0]))

	
sample()

	Return a single sample from np.random.uniform.

	
class rlpyt.spaces.composite.Composite(spaces, NamedTupleCls)

	Bases: rlpyt.spaces.base.Space

A space for composing arbitrary combinations of spaces together.

	
__init__(spaces, NamedTupleCls)

	Must input the instantiated sub-spaces in order (e.g. list or
tuple), and a named tuple class with whch to organize the sub-spaces
and resulting samples. The NamedTupleCls should be defined in
the module (file) which defines the composite space.

	
sample()

	Return a single sample which is a named tuple composed of samples
from all sub-spaces.

	
null_value()

	Return a null value which is a named tuple composed of null
values from all sub-spaces.

	
shape

	Return a named tuple composed of shapes of every sub-space.

	
names

	Return names of sub-spaces.

	
spaces

	Return the bare sub-spaces.

	
class rlpyt.spaces.gym_wrapper.GymSpaceWrapper(space, null_value=0, name='obs', force_float32=True)

	Wraps a gym space to match the rlpyt interface; most of
the functionality is for automatically converting a GymDict (dictionary)
space into an rlpyt Composite space (and converting between the two). Use
inside the initialization of the environment wrapper for a gym environment.

	
__init__(space, null_value=0, name='obs', force_float32=True)

	Input space is a gym space instance.

Input name is used to disambiguate different gym spaces being
wrapped, which is necessary if more than one GymDict space is to be
wrapped in the same file. The reason is that the associated
namedtuples must be defined in the globals of this file, so they must
have distinct names.

	
sample()

	Returns a single sample in a namedtuple (for composite) or numpy
array using the the sample() method of the underlying gym
space(s).

	
null_value()

	Similar to sample() but returning a null value.

	
convert(value)

	For dictionary space, use to convert wrapped env’s dict to rlpyt
namedtuple, i.e. inside the environment wrapper’s step(), for
observation output to the rlpyt sampler (see helper function in
file)

	
revert(value)

	For dictionary space, use to revert namedtuple action into wrapped
env’s dict, i.e. inside the environment wrappers step(), for input
to the underlying gym environment (see helper function in file).

Model Components

This page documents the implemented neural network components. These are intended as building blocks for the agent model, but not to be used as standalone models (should probably disambiguate the name from model).

Complete models which actually function as the agent model have additional functionality in the forward() method for handling of leading dimensions of inputs/outputs. See infer_leading_dims() and restore_leading_dims until utilities, and see the documentation for each algorithm for associated complete models.

	
class rlpyt.models.mlp.MlpModel(input_size, hidden_sizes, output_size=None, nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>)

	Bases: sphinx.ext.autodoc.importer._MockObject

Multilayer Perceptron with last layer linear.

	Parameters

	
	input_size (int) – number of inputs

	hidden_sizes (list) – can be empty list for none (linear model).

	output_size – linear layer at output, or if None, the last hidden size will be the output size and will have nonlinearity applied

	nonlinearity – torch nonlinearity Module (not Functional).

	
forward(input)

	Compute the model on the input, assuming input shape [B,input_size].

	
output_size

	Retuns the output size of the model.

	
class rlpyt.models.conv2d.Conv2dModel(in_channels, channels, kernel_sizes, strides, paddings=None, nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, use_maxpool=False, head_sizes=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

2-D Convolutional model component, with option for max-pooling vs
downsampling for strides > 1. Requires number of input channels, but
not input shape. Uses torch.nn.Conv2d.

	
forward(input)

	Computes the convolution stack on the input; assumes correct shape
already: [B,C,H,W].

	
conv_out_size(h, w, c=None)

	Helper function ot return the output size for a given input shape,
without actually performing a forward pass through the model.

	
class rlpyt.models.conv2d.Conv2dHeadModel(image_shape, channels, kernel_sizes, strides, hidden_sizes, output_size=None, paddings=None, nonlinearity=<sphinx.ext.autodoc.importer._MockObject object>, use_maxpool=False)

	Bases: sphinx.ext.autodoc.importer._MockObject

Model component composed of a Conv2dModel component followed by
a fully-connected MlpModel head. Requires full input image shape to
instantiate the MLP head.

	
forward(input)

	Compute the convolution and fully connected head on the input;
assumes correct input shape: [B,C,H,W].

	
output_size

	Returns the final output size after MLP head.

Utilities

	
rlpyt.models.utils.conv2d_output_shape(h, w, kernel_size=1, stride=1, padding=0, dilation=1)

	Returns output H, W after convolution/pooling on input H, W.

	
class rlpyt.models.utils.ScaleGrad(*args, **kwargs)

	Model component to scale gradients back from layer, without affecting
the forward pass. Used e.g. in dueling heads DQN models.

	
static forward(ctx, tensor, scale)

	Stores the scale input to ctx for application in
backward(); simply returns the input tensor.

	
static backward(ctx, grad_output)

	Return the grad_output multiplied by ctx.scale. Also returns
a None as placeholder corresponding to (non-existent) gradient of
the input scale of forward().

	
rlpyt.models.utils.update_state_dict(model, state_dict, tau=1, strip_ddp=True)

	Update the state dict of model using the input state_dict, which
must match format. tau==1 applies hard update, copying the values, 0<tau<1
applies soft update: tau * new + (1 - tau) * old.

	
rlpyt.models.utils.strip_ddp_state_dict(state_dict)

	Workaround the fact that DistributedDataParallel prepends ‘module.’ to
every key, but the sampler models will not be wrapped in
DistributedDataParallel. (Solution from PyTorch forums.)

Environments

The Atari Environment and a Gym Env Wrapper are included in rlpyt.

Atari

	
class rlpyt.envs.atari.atari_env.AtariTrajInfo(**kwargs)

	Bases: rlpyt.samplers.collections.TrajInfo

TrajInfo class for use with Atari Env, to store raw game score separate
from clipped reward signal.

	
class rlpyt.envs.atari.atari_env.AtariEnv(game='pong', frame_skip=4, num_img_obs=4, clip_reward=True, episodic_lives=True, fire_on_reset=False, max_start_noops=30, repeat_action_probability=0.0, horizon=27000)

	Bases: rlpyt.envs.base.Env

An efficient implementation of the classic Atari RL envrionment using the
Arcade Learning Environment (ALE).

	Output env_info includes:

	
	game_score: raw game score, separate from reward clipping.

	traj_done: special signal which signals game-over or timeout, so that sampler doesn’t reset the environment when done==True but traj_done==False, which can happen when episodic_lives==True.

Always performs 2-frame max to avoid flickering (this is pretty fast).

Screen size downsampling is done by cropping two rows and then
downsampling by 2x using cv2: (210, 160) –> (80, 104). Downsampling by
2x is much faster than the old scheme to (84, 84), and the (80, 104) shape
is fairly convenient for convolution filter parameters which don’t cut off
edges.

The action space is an IntBox for the number of actions. The observation
space is an IntBox with dtype=uint8 to save memory; conversion to float
should happen inside the agent’s model’s forward() method.

(See the file for implementation details.)

	Parameters

	
	game (str) – game name

	frame_skip (int) – frames per step (>=1)

	num_img_obs (int) – number of frames in observation (>=1)

	clip_reward (bool) – if True, clip reward to np.sign(reward)

	episodic_lives (bool) – if True, output done=True but env_info[traj_done]=False when a life is lost

	max_start_noops (int) – upper limit for random number of noop actions after reset

	repeat_action_probability (0-1) – probability for sticky actions

	horizon (int) – max number of steps before timeout / traj_done=True

	
reset()

	Performs hard reset of ALE game.

Gym Wrappers

	
class rlpyt.envs.gym.GymEnvWrapper(env, act_null_value=0, obs_null_value=0, force_float32=True)

	Gym-style wrapper for converting the Openai Gym interface to the
rlpyt interface. Action and observation spaces are wrapped by rlpyt’s
GymSpaceWrapper.

Output env_info is automatically converted from a dictionary to a
corresponding namedtuple, which the rlpyt sampler expects. For this to
work, every key that might appear in the gym environments env_info at
any step must appear at the first step after a reset, as the env_info
entries will have sampler memory pre-allocated for them (so they also
cannot change dtype or shape). (see EnvInfoWrapper, build_info_tuples,
and info_to_nt in file or more help/details)

Warning

Unrecognized keys in env_info appearing later during use will be
silently ignored.

This wrapper looks for gym’s TimeLimit env wrapper to
see whether to add the field timeout to env info.

	
step(action)

	Reverts the action from rlpyt format to gym format (i.e. if composite-to-
dictionary spaces), steps the gym environment, converts the observation
from gym to rlpyt format (i.e. if dict-to-composite), and converts the
env_info from dictionary into namedtuple.

	
reset()

	Returns converted observation from gym env reset.

	
spaces

	Returns the rlpyt spaces for the wrapped env.

	
class rlpyt.envs.gym.EnvInfoWrapper(env, info_example)

	Gym-style environment wrapper to infill the env_info dict of every
step() with a pre-defined set of examples, so that env_info has
those fields at every step and they are made available to the algorithm in
the sampler’s batch of data.

	
step(action)

	If need be, put extra fields into the env_info dict returned.
See file for function infill_info() for details.

	
rlpyt.envs.gym.make(*args, info_example=None, **kwargs)

	Use as factory function for making instances of gym environment with
rlpyt’s GymEnvWrapper, using gym.make(*args, **kwargs). If
info_example is not None, will include the EnvInfoWrapper.

Replay Buffers

Several variants of replay buffers are included in rlpyt. Options include: n-step returns (computed by the replay buffer), prioritized replay (sum-tree), frame-based observation storage (for memory savings), and replay of sequences.

All buffers are based on pre-allocated a size of memory with leading dimensions [T,B], where B is the expected (and required) corresponding dimension in the input sample batches (which will be the number of parallel environmnets in the sampler), and T is chosen to attain the total requested buffer size. A universal time cursor tracks the position of latest inputs along the T dimension of the buffer, and it wraps automatically. Use of namedarraytuples makes it straightforward to write data of arbitrary structure to the buffer’s next indexes. Further benefits are that pre-allocated storage doesn’t grow and is more easily shared across processes (async mode). But this format does require accounting for which samples are currently invalid due to partial memory overwrite, based on n-step returns or needing to replay sequences. If memory and performance optimization are less of a concern, it might be preferable to write a simpler buffer which, for example, stores a rotating list of complete sequences to replay.

Hint

The implemented replay buffers share a lot of components, and sub-classing with multiple inheritances is used to prevent redundant code. If modifying a replay buffer, it might be easier to first copy all desired components into one monolithic class, and then work from there.

Replay Buffer Components

Base Buffers

	
class rlpyt.replays.base.BaseReplayBuffer

	
	
append_samples(samples)

	Add new data to the replay buffer, possibly ejecting old data.

	
sample_batch(batch_B, batch_T=None)

	Returns a data batch, e.g. for training.

	
class rlpyt.replays.n_step.BaseNStepReturnBuffer(example, size, B, discount=1, n_step_return=1)

	Bases: rlpyt.replays.base.BaseReplayBuffer

Stores the most recent data and computes n_step returns. Operations are
all vectorized, as data is stored with leading dimensions [T,B]. Cursor
is next idx to be written.

For now, Assume all incoming samples are “valid” (i.e. must have
mid_batch_reset=True in sampler). Can relax this later by tracking valid
for each data sample.

Subclass this with specific batch sampling scheme.

Latest n_step timesteps up to cursor are temporarily invalid because all
future empirical rewards not yet sampled (off_backward). The current
cursor position is also an invalid sample, because the previous action
and previous reward have been overwritten (off_forward).

Input example should be a namedtuple with the structure of data
(and one example each, no leading dimensions), which will be input every
time samples are appended.

If n_step_return>1, then additional buffers samples_return_ and
samples_done_n will also be allocated. n-step returns for a given
sample will be stored at that same index (e.g. samples_return_[T,B] will
store reward[T,B] + discount * reward[T+1,B], + discount ** 2 *
reward[T+2,B],…). done_n refers to whether a done=True signal
appears in any of the n-step future, such that the following value should
not be bootstrapped.

	
append_samples(samples)

	Write the samples into the buffer and advance the time cursor.
Handle wrapping of the cursor if necessary (boundary doesn’t need to
align with length of samples). Compute and store returns with
newly available rewards.

	
compute_returns(T)

	Compute the n-step returns using the new rewards just written into
the buffer, but before the buffer cursor is advanced. Input T is
the number of new timesteps which were just written.
Does nothing if n-step==1. e.g. if 2-step return, t-1
is first return written here, using reward at t-1 and new reward at t
(up through t-1+T from t+T).

	
class rlpyt.replays.frame.FrameBufferMixin(example, **kwargs)

	Like n-step return buffer but expects multi-frame input observation where
each new observation has one new frame and the rest old; stores only
unique frames to save memory. Samples observation should be shaped:
[T,B,C,..] with C the number of frames. Expects frame order: OLDEST to
NEWEST.

A special method for replay will be required to piece the frames back
together into full observations.

Latest n_steps up to cursor temporarilty invalid because “next” not yet
written. Cursor timestep invalid because previous action and reward
overwritten. NEW: Next n_frames-1 invalid because observation history
frames overwritten.

	
append_samples(samples)

	Appends all samples except for the observation as normal.
Only the new frame in each observation is recorded.

	
class rlpyt.replays.async_.AsyncReplayBufferMixin(*args, **kwargs)

	Mixin class which manages the buffer (shared) memory under a read-write
lock (multiple-reader, single-writer), for use with the asynchronous
runner. Wraps the append_samples(), sample_batch(), and
update_batch_priorities() methods. Maintains a universal buffer
cursor, communicated asynchronously. Supports multiple buffer-writer
processes and multiple replay processes.

Non-Sequence Replays

	
class rlpyt.replays.non_sequence.n_step.NStepReturnBuffer(example, size, B, discount=1, n_step_return=1)

	Bases: rlpyt.replays.n_step.BaseNStepReturnBuffer

Definition of what fields are replayed from basic n-step return buffer.

	
extract_batch(T_idxs, B_idxs)

	From buffer locations [T_idxs,B_idxs], extract data needed for
training, including target values at T_idxs + n_step_return. Returns
namedarraytuple of torch tensors (see file for all fields). Each tensor
has leading batch dimension len(T_idxs)==len(B_idxs), but individual
samples are drawn, so no leading time dimension.

	
extract_observation(T_idxs, B_idxs)

	Simply observation[T_idxs,B_idxs]; generalization anticipating
frame-based buffer.

	
class rlpyt.replays.non_sequence.frame.NStepFrameBuffer(example, **kwargs)

	Bases: rlpyt.replays.frame.FrameBufferMixin, rlpyt.replays.non_sequence.n_step.NStepReturnBuffer

Special method for re-assembling observations from frames.

	
extract_observation(T_idxs, B_idxs)

	Assembles multi-frame observations from frame-wise buffer. Frames
are ordered OLDEST to NEWEST along C dim: [B,C,H,W]. Where
done=True is found, the history is not full due to recent
environment reset, so these frames are zero-ed.

	
class rlpyt.replays.non_sequence.uniform.UniformReplay

	Replay of individual samples by uniform random selection.

	
sample_batch(batch_B)

	Randomly select desired batch size of samples to return, uses
sample_idxs() and extract_batch().

	
sample_idxs(batch_B)

	Randomly choose the indexes of data to return using
np.random.randint(). Disallow samples within certain proximity to
the current cursor which hold invalid data.

	
class rlpyt.replays.non_sequence.prioritized.PrioritizedReplay(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Prioritized experience replay using sum-tree prioritization.

The priority tree must configure at instantiation if priorities will be
input with samples in append_samples(), by parameter
input_priorities=True, else the default value will be applied to all
new samples.

	
append_samples(samples)

	Looks for samples.priorities; if not found, uses default priority. Writes
samples using super class’s append_samples, and advances matching cursor in
priority tree.

	
sample_batch(batch_B)

	Calls on the priority tree to generate random samples. Returns
samples data and normalized importance-sampling weights:
is_weights=priorities ** -beta

	
update_batch_priorities(priorities)

	Takes in new priorities (i.e. from the algorithm after a training
step) and sends them to priority tree as priorities ** alpha; the
tree internally remembers which indexes were sampled for this batch.

	
class rlpyt.replays.non_sequence.time_limit.NStepTimeLimitBuffer(*args, **kwargs)

	Bases: rlpyt.replays.non_sequence.n_step.NStepReturnBuffer

For use in e.g. SAC when bootstrapping when env done due to timeout.
Expects input samples to include timeout field, and returns
timeout and timeout_n similar to done and done_n.

Sequence Replays

	
class rlpyt.replays.sequence.n_step.SequenceNStepReturnBuffer(example, size, B, rnn_state_interval, batch_T=None, **kwargs)

	Bases: rlpyt.replays.n_step.BaseNStepReturnBuffer

Base n-step return buffer for sequences replays. Includes storage of
agent’s recurrent (RNN) state.

Use of rnn_state_interval>1 only periodically
stores RNN state, to save memory. The replay mechanism must account for the
fact that only time-steps with saved RNN state are valid first states for replay.
(rnn_state_interval<1 does not store RNN state.)

	
append_samples(samples)

	Special handling for RNN state storage, and otherwise uses superclass’s
append_samples().

	
extract_batch(T_idxs, B_idxs, T)

	Return full sequence of each field in agent_inputs (e.g. observation),
including all timesteps for the main sequence and for the target sequence in
one array; many timesteps will likely overlap, so the algorithm and make
sub-sequences by slicing on device, for reduced memory usage.

Enforces that input T_idxs align with RNN state interval.

Uses helper function extract_sequences() to retrieve samples of
length T starting at locations [T_idxs,B_idxs], so returned
data batch has leading dimensions [T,len(B_idxs)].

	
class rlpyt.replays.sequence.frame.SequenceNStepFrameBuffer(example, **kwargs)

	Bases: rlpyt.replays.frame.FrameBufferMixin, rlpyt.replays.sequence.n_step.SequenceNStepReturnBuffer

Includes special method for extracting observation sequences from a frame-wise
buffer, where each time-step includes multiple frames. Each returned sequence
will contain many redundant frames (A more efficient way would be to
turn the Conv2D into a Conv3D and only return unique frames.)

	
extract_observation(T_idxs, B_idxs, T)

	Observations are re-assembled from frame-wise buffer as [T,B,C,H,W],
where C is the frame-history channels, which will have redundancy across the
T dimension. Frames are returned OLDEST to NEWEST along the C dimension.

Frames are zero-ed after environment resets.

	
class rlpyt.replays.sequence.uniform.UniformSequenceReplay

	Replays sequences with starting state chosen uniformly randomly.

	
sample_batch(batch_B, batch_T=None)

	Can dynamically input length of sequences to return, by batch_T,
else if None will use interanlly set value. Returns batch with
leading dimensions [batch_T, batch_B].

	
sample_idxs(batch_B, batch_T)

	Randomly choose the indexes of starting data to return using
np.random.randint(). Disallow samples within certain proximity to
the current cursor which hold invalid data, including accounting for
sequence length (so every state returned in sequence will hold valid
data). If the RNN state is only stored periodically, only choose
starting states with stored RNN state.

	
class rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplay(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Prioritized experience replay of sequences using sum-tree prioritization.
The size of the sum-tree is based on the number of RNN states stored,
since valid sequences must start with an RNN state. Hence using periodic
storage with rnn_state_inveral>1 results in a faster tree using less
memory. Replay buffer priorities are indexed to the start of the whole sequence
to be returned, regardless of whether the initial part is used only as RNN warmup.

Requires batch_T to be set and fixed at instantiation, so that the
priority tree has a fixed scheme for which samples are temporarilty
invalid due to the looping cursor (the tree must set and propagate 0-priorities
for those samples, so dynamic batch_T could require additional tree
operations for every sampling event).

Parameter input_priority_shift is used to assign input priorities to a
starting time-step which is shifted from the samples input to
append_samples(). For example, in R2D1, using replay sequences of 120
time-steps, with 40 steps for warmup and 80 steps for training, we might
run the sampler with 40-step batches, and store the RNN state only at the
beginning of each batch: rnn_state_interval=40. In this scenario, we
would use input_priority_shift=2, so that the input priorities which
are provided with each batch of samples are assigned to sequence
start-states at the beginning of warmup (shifted 2 entries back in the
priority tree). This way, the input priorities can be computed after
seeing all 80 training steps. In the meantime, the partially-written
sequences are marked as temporarily invalid for replay anyway, according
to buffer cursor position and the fixed batch_T replay setting. (If
memory and performance optimization are less of a concern, the indexing
effort might all be simplified by writing a replay buffer which manages a
list of valid trajectories to sample, rather than a monolithic,
pre-allocated buffer.)

	
append_samples(samples)

	Like non-sequence prioritized, except also stores RNN state, and
advances the priority tree cursor according to the number of RNN states
stored (which might be less than overall number of time-steps).

	
sample_batch(batch_B)

	Returns batch with leading dimensions [self.batch_T, batch_B],
with each sequence sampled randomly according to priority.
(self.batch_T should not be changed).

Priority Tree

	
class rlpyt.replays.sum_tree.SumTree(T, B, off_backward, off_forward, default_value=1, enable_input_priorities=False, input_priority_shift=0)

	Sum tree for matrix of values stored as [T,B], updated in chunks along T
dimension, applying to the full B dimension at each update. Priorities
represented as first T*B leaves of binary tree. Turns on/off entries in
vicinity of cursor position according to “off_backward” (e.g.
n_step_return) and “off_forward” (e.g. 1 for
prev_action or max(1, frames-1) for frame-wise buffer).
Provides efficient sampling from non-uniform probability masses.

Note

Tried single precision (float32) tree, and it sometimes returned
samples with priority 0.0, because subtraction during tree cascade
left random value larger than the remaining sum; suggest keeping
float64.

	
advance(T, priorities=None)

	Cursor advances by T: set priorities to zero in vicinity of new
cursor position and turn priorities on for new samples since previous
cursor position.
Optional param priorities can be None for default, or of
dimensions [T, B], or [B] or scalar will broadcast. (Must have enabled
input_priorities=True when instantiating the tree.) These will be
stored at the current cursor position, meaning these priorities
correspond to the current values being added to the buffer, even
though their priority might temporarily be set to zero until future
advances.

	
sample(n, unique=False)

	Get n samples, with replacement (default) or without. Use
np.random.rand() to generate random values with which to descend
the tree to each sampled leaf node. Returns T_idxs and B_idxs, and sample
priorities.

	
update_batch_priorities(priorities)

	Apply new priorities to tree at the leaf positions where the last
batch was returned from the sample() method.

	
print_tree(level=None)

	Print values for whole tree or at specified level.

	
class rlpyt.replays.sum_tree.AsyncSumTree(*args, **kwargs)

	Bases: rlpyt.replays.sum_tree.SumTree

Allocates the tree into shared memory, and manages asynchronous cursor
position, for different read and write processes. Assumes that writing to
tree values is lock protected elsewhere, i.e. by the replay buffer.

Full Replay Buffer Classes

These are all defined purely as sub-classes with above components.

Non-Sequence Replay

	
class rlpyt.replays.non_sequence.uniform.UniformReplayBuffer(example, size, B, discount=1, n_step_return=1)

	Bases: rlpyt.replays.non_sequence.uniform.UniformReplay, rlpyt.replays.non_sequence.n_step.NStepReturnBuffer

	
class rlpyt.replays.non_sequence.uniform.AsyncUniformReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.non_sequence.uniform.UniformReplayBuffer

	
class rlpyt.replays.non_sequence.prioritized.PrioritizedReplayBuffer(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Bases: rlpyt.replays.non_sequence.prioritized.PrioritizedReplay, rlpyt.replays.non_sequence.n_step.NStepReturnBuffer

	
class rlpyt.replays.non_sequence.prioritized.AsyncPrioritizedReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.non_sequence.prioritized.PrioritizedReplayBuffer

	
class rlpyt.replays.non_sequence.frame.UniformReplayFrameBuffer(example, **kwargs)

	Bases: rlpyt.replays.non_sequence.uniform.UniformReplay, rlpyt.replays.non_sequence.frame.NStepFrameBuffer

	
class rlpyt.replays.non_sequence.frame.PrioritizedReplayFrameBuffer(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Bases: rlpyt.replays.non_sequence.prioritized.PrioritizedReplay, rlpyt.replays.non_sequence.frame.NStepFrameBuffer

	
class rlpyt.replays.non_sequence.frame.AsyncUniformReplayFrameBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.non_sequence.frame.UniformReplayFrameBuffer

	
class rlpyt.replays.non_sequence.frame.AsyncPrioritizedReplayFrameBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.non_sequence.frame.PrioritizedReplayFrameBuffer

	
class rlpyt.replays.non_sequence.time_limit.TlUniformReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.non_sequence.uniform.UniformReplay, rlpyt.replays.non_sequence.time_limit.NStepTimeLimitBuffer

	
class rlpyt.replays.non_sequence.time_limit.TlPrioritizedReplayBuffer(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Bases: rlpyt.replays.non_sequence.prioritized.PrioritizedReplay, rlpyt.replays.non_sequence.time_limit.NStepTimeLimitBuffer

	
class rlpyt.replays.non_sequence.time_limit.AsyncTlUniformReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.non_sequence.time_limit.TlUniformReplayBuffer

	
class rlpyt.replays.non_sequence.time_limit.AsyncTlPrioritizedReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.non_sequence.time_limit.TlPrioritizedReplayBuffer

Sequence Replay

	
class rlpyt.replays.sequence.uniform.UniformSequenceReplayBuffer(example, size, B, rnn_state_interval, batch_T=None, **kwargs)

	Bases: rlpyt.replays.sequence.uniform.UniformSequenceReplay, rlpyt.replays.sequence.n_step.SequenceNStepReturnBuffer

	
class rlpyt.replays.sequence.uniform.AsyncUniformSequenceReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.sequence.uniform.UniformSequenceReplayBuffer

	
class rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplayBuffer(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Bases: rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplay, rlpyt.replays.sequence.n_step.SequenceNStepReturnBuffer

	
class rlpyt.replays.sequence.prioritized.AsyncPrioritizedSequenceReplayBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplayBuffer

	
class rlpyt.replays.sequence.frame.UniformSequenceReplayFrameBuffer(example, **kwargs)

	Bases: rlpyt.replays.sequence.uniform.UniformSequenceReplay, rlpyt.replays.sequence.frame.SequenceNStepFrameBuffer

	
class rlpyt.replays.sequence.frame.PrioritizedSequenceReplayFrameBuffer(alpha=0.6, beta=0.4, default_priority=1, unique=False, input_priorities=False, input_priority_shift=0, **kwargs)

	Bases: rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplay, rlpyt.replays.sequence.frame.SequenceNStepFrameBuffer

	
class rlpyt.replays.sequence.frame.AsyncUniformSequenceReplayFrameBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.sequence.frame.UniformSequenceReplayFrameBuffer

	
class rlpyt.replays.sequence.frame.AsyncPrioritizedSequenceReplayFrameBuffer(*args, **kwargs)

	Bases: rlpyt.replays.async_.AsyncReplayBufferMixin, rlpyt.replays.sequence.frame.PrioritizedSequenceReplayFrameBuffer

Named Array Tuples

	
rlpyt.utils.collections.namedarraytuple(typename, field_names, return_namedtuple_cls=False, classname_suffix=False)

	Returns a new subclass of a namedtuple which exposes indexing / slicing
reads and writes applied to all contained objects, which must share
indexing (__getitem__) behavior (e.g. numpy arrays or torch tensors).

(Code follows pattern of collections.namedtuple.)

>>> PointsCls = namedarraytuple('Points', ['x', 'y'])
>>> p = PointsCls(np.array([0, 1]), y=np.array([10, 11]))
>>> p
Points(x=array([0, 1]), y=array([10, 11]))
>>> p.x # fields accessible by name
array([0, 1])
>>> p[0] # get location across all fields
Points(x=0, y=10) # (location can be index or slice)
>>> p.get(0) # regular tuple-indexing into field
array([0, 1])
>>> x, y = p # unpack like a regular tuple
>>> x
array([0, 1])
>>> p[1] = 2 # assign value to location of all fields
>>> p
Points(x=array([0, 2]), y=array([10, 2]))
>>> p[1] = PointsCls(3, 30) # assign to location field-by-field
>>> p
Points(x=array([0, 3]), y=array([10, 30]))
>>> 'x' in p # check field name instead of object
True

	
class rlpyt.utils.collections.DocExampleNat(field_1, field_2)

	
	
__contains__(key)

	Checks presence of field name (unlike tuple; like dict).

	
__getitem__(loc)

	Return a new DocExampleNat instance containing the selected index or slice from each field.

	
__setitem__(loc, value)

	If input value is the same named[array]tuple type, iterate through its
fields and assign values into selected index or slice of corresponding
field. Else, assign whole of value to selected index or slice of
all fields. Ignore fields that are both None.

	
get(index)

	Retrieve value as if indexing into regular tuple.

	
items()

	Iterate ordered (field_name, value) pairs (like OrderedDict).

	
rlpyt.utils.collections.is_namedtuple_class(obj)

	Heuristic, might be spoofed.
Returns False if obj is namedarraytuple class.

	
rlpyt.utils.collections.is_namedarraytuple_class(obj)

	Heuristic, might be spoofed.
Returns False if obj is namedtuple class.

	
rlpyt.utils.collections.is_namedtuple(obj)

	Heuristic, might be spoofed.
Returns False if obj is namedarraytuple.

	
rlpyt.utils.collections.is_namedarraytuple(obj)

	Heuristic, might be spoofed.
Returns False if obj is namedtuple.

	
rlpyt.utils.collections.namedarraytuple_like(namedtuple_or_class, classname_suffix=False)

	Returns namedarraytuple class with same name and fields as input
namedtuple or namedarraytuple instance or class. If input is
namedarraytuple instance or class, the same class is returned directly.
Input can also be from the new Schema format, instances of the four:
Named[Array]Tuple[Schema].

Alternative Implementation

Classes for creating objects which closely follow the interfaces for namedtuple and namedarraytuple types and instances, except without defining a new class for each type. (May be easier to use with regards to pickling under spawn, or dynamically creating types, by avoiding module-level definitions.

	
class rlpyt.utils.collections.NamedTupleSchema(typename, fields)

	Instances of this class act like a type returned by namedtuple().

	
__call__(*args, **kwargs)

	Allows instances to act like namedtuple constructors.

	
_make(iterable)

	Allows instances to act like namedtuple constructors.

	
class rlpyt.utils.collections.NamedTuple

	Bases: tuple

Instances of this class act like instances of namedtuple types, but this
same class is used for all namedtuple-like types created. Unlike true
namedtuples, this mock avoids defining a new class for each configuration
of typename and field names. Methods from namedtuple source are copied
here.

Implementation differences from namedtuple:

	The individual fields don’t show up in dir(obj), but they do still
show up as hasattr(obj, field) => True, because of __getattr__().

	These objects have a __dict__ (by ommitting __slots__ = ()),
intended to hold only the typename and list of field names, which are
now instance attributes instead of class attributes.

	Since property(itemgetter(i)) only works on classes, __getattr__()
is modified instead to look for field names.

	Attempts to enforce call signatures are included, might not exactly
match.

	
__getattr__(name)

	Look in _fields when name is not in dir(self).

	
_make(iterable)

	Make a new object of same typename and fields from a sequence or
iterable.

	
_replace(**kwargs)

	Return a new object of same typename and fields, replacing specified
fields with new values.

	
_asdict()

	Return an ordered dictionary mapping field names to their values.

	
class rlpyt.utils.collections.NamedArrayTupleSchema(*args, **kwargs)

	Bases: rlpyt.utils.collections.NamedTupleSchema

Instances of this class act like a type returned by rlpyt’s
namedarraytuple().

	
class rlpyt.utils.collections.NamedArrayTuple

	Bases: rlpyt.utils.collections.NamedTuple

	
rlpyt.utils.collections.NamedArrayTupleSchema_like(example)

	Returns a NamedArrayTupleSchema instance with the same name and fields
as input, which can be a class or instance of namedtuple or
namedarraytuple, or an instance of NamedTupleSchema, NamedTuple,
NamedArrayTupleSchema, or NamedArrayTuple.

Utilities

Here are listed number of miscellaneous utilities used in rlpyt.

Array

Miscellaneous functions for manipulating numpy arrays.

	
rlpyt.utils.array.select_at_indexes(indexes, array)

	Returns the contents of array at the multi-dimensional integer
array indexes. Leading dimensions of array must match the
dimensions of indexes.

	
rlpyt.utils.array.to_onehot(indexes, dim, dtype=None)

	Converts integer values in multi-dimensional array indexes
to one-hot values of size dim; expanded in an additional
trailing dimension.

	
rlpyt.utils.array.valid_mean(array, valid=None, axis=None)

	Mean of array, accounting for optional mask valid,
optionally along an axis.

	
rlpyt.utils.array.infer_leading_dims(array, dim)

	Determine any leading dimensions of array, which can have up to two
leading dimensions more than the number of data dimensions, dim. Used
to check for [B] or [T,B] leading. Returns size of leading dimensions (or
1 if they don’t exist), the data shape, and whether the leading dimensions
where found.

Tensor

Miscellaneous functions for manipulating torch tensors.

	
rlpyt.utils.tensor.select_at_indexes(indexes, tensor)

	Returns the contents of tensor at the multi-dimensional integer
array indexes. Leading dimensions of tensor must match the
dimensions of indexes.

	
rlpyt.utils.tensor.to_onehot(indexes, num, dtype=None)

	Converts integer values in multi-dimensional tensor indexes
to one-hot values of size num; expanded in an additional
trailing dimension.

	
rlpyt.utils.tensor.from_onehot(onehot, dim=-1, dtype=None)

	Argmax over trailing dimension of tensor onehot. Optional return
dtype specification.

	
rlpyt.utils.tensor.valid_mean(tensor, valid=None, dim=None)

	Mean of tensor, accounting for optional mask valid,
optionally along a dimension.

	
rlpyt.utils.tensor.infer_leading_dims(tensor, dim)

	Looks for up to two leading dimensions in tensor, before
the data dimensions, of which there are assumed to be dim number.
For use at beginning of model’s forward() method, which should
finish with restore_leading_dims() (see that function for help.)
Returns:
lead_dim: int –number of leading dims found.
T: int –size of first leading dim, if two leading dims, o/w 1.
B: int –size of first leading dim if one, second leading dim if two, o/w 1.
shape: tensor shape after leading dims.

	
rlpyt.utils.tensor.restore_leading_dims(tensors, lead_dim, T=1, B=1)

	Reshapes tensors (one or tuple, list) to to have lead_dim
leading dimensions, which will become [], [B], or [T,B]. Assumes input
tensors already have a leading Batch dimension, which might need to be
removed. (Typically the last layer of model will compute with leading
batch dimension.) For use in model forward() method, so that output
dimensions match input dimensions, and the same model can be used for any
such case. Use with outputs from infer_leading_dims().

Miscellaneous Array / Tensor

	
rlpyt.utils.misc.iterate_mb_idxs(data_length, minibatch_size, shuffle=False)

	Yields minibatches of indexes, to use as a for-loop iterator, with
option to shuffle.

	
rlpyt.utils.misc.zeros(shape, dtype)

	Attempt to return torch tensor of zeros, or if numpy dtype provided,
return numpy array or zeros.

	
rlpyt.utils.misc.empty(shape, dtype)

	Attempt to return empty torch tensor, or if numpy dtype provided,
return empty numpy array.

	
rlpyt.utils.misc.extract_sequences(array_or_tensor, T_idxs, B_idxs, T)

	Assumes array_or_tensor has [T,B] leading dims. Returns new
array/tensor which contains sequences of length [T] taken from the
starting indexes [T_idxs, B_idxs], where T_idxs (and B_idxs) is a list or
vector of integers. Handles wrapping automatically. (Return shape: [T,
len(B_idxs),…]).

Collections

(see Named Array Tuple page)

	
class rlpyt.utils.collections.AttrDict(*args, **kwargs)

	Bases: dict

Behaves like a dictionary but additionally has attribute-style access
for both read and write.
e.g. x[“key”] and x.key are the same,
e.g. can iterate using: for k, v in x.items().
Can sublcass for specific data classes; must call AttrDict’s __init__().

	
copy()

	Provides a “deep” copy of all unbroken chains of types AttrDict, but
shallow copies otherwise, (e.g. numpy arrays are NOT copied).

Buffers

	
rlpyt.utils.buffer.buffer_from_example(example, leading_dims, share_memory=False, use_NatSchema=None)

	Allocates memory and returns it in namedarraytuple with same
structure as examples, which should be a namedtuple or
namedarraytuple. Applies the same leading dimensions leading_dims to
every entry, and otherwise matches their shapes and dtypes. The examples
should have no leading dimensions. None fields will stay None.
Optionally allocate on OS shared memory. Uses build_array().

New: can use NamedArrayTuple types by the use_NatSchema flag, which
may be easier for pickling/unpickling when using spawn instead
of fork. If use_NatSchema is None, the type of example will be used to
infer what type to return (this is the default)

	
rlpyt.utils.buffer.build_array(example, leading_dims, share_memory=False)

	Allocate a numpy array matchin the dtype and shape of example, possibly
with additional leading dimensions. Optionally allocate on OS shared
memory.

	
rlpyt.utils.buffer.np_mp_array(shape, dtype)

	Allocate a numpy array on OS shared memory.

	
rlpyt.utils.buffer.torchify_buffer(buffer_)

	Convert contents of buffer_ from numpy arrays to torch tensors.
buffer_ can be an arbitrary structure of tuples, namedtuples,
namedarraytuples, NamedTuples, and NamedArrayTuples, and a new, matching
structure will be returned. None fields remain None, and torch
tensors are left alone.

	
rlpyt.utils.buffer.numpify_buffer(buffer_)

	Convert contents of buffer_ from torch tensors to numpy arrays.
buffer_ can be an arbitrary structure of tuples, namedtuples,
namedarraytuples, NamedTuples, and NamedArrayTuples, and a new, matching
structure will be returned. None fields remain None, and numpy
arrays are left alone.

	
rlpyt.utils.buffer.buffer_to(buffer_, device=None)

	Send contents of buffer_ to specified device (contents must be
torch tensors.). buffer_ can be an arbitrary structure of tuples,
namedtuples, namedarraytuples, NamedTuples and NamedArrayTuples, and a
new, matching structure will be returned.

	
rlpyt.utils.buffer.buffer_method(buffer_, method_name, *args, **kwargs)

	Call method method_name(*args, **kwargs) on all contents of
buffer_, and return the results. buffer_ can be an arbitrary
structure of tuples, namedtuples, namedarraytuples, NamedTuples, and
NamedArrayTuples, and a new, matching structure will be returned.
None fields remain None.

	
rlpyt.utils.buffer.buffer_func(buffer_, func, *args, **kwargs)

	Call function func(buf, *args, **kwargs) on all contents of
buffer_, and return the results. buffer_ can be an arbitrary
structure of tuples, namedtuples, namedarraytuples, NamedTuples, and
NamedArrayTuples, and a new, matching structure will be returned.
None fields remain None.

	
rlpyt.utils.buffer.get_leading_dims(buffer_, n_dim=1)

	Return the n_dim number of leading dimensions of the contents of
buffer_. Checks to make sure the leading dimensions match for all
tensors/arrays, except ignores None fields.

Algorithms

	
rlpyt.algos.utils.discount_return(reward, done, bootstrap_value, discount, return_dest=None)

	Time-major inputs, optional other dimensions: [T], [T,B], etc. Computes
discounted sum of future rewards from each time-step to the end of the
batch, including bootstrapping value. Sum resets where done is 1.
Optionally, writes to buffer return_dest, if provided. Operations
vectorized across all trailing dimensions after the first [T,].

	
rlpyt.algos.utils.generalized_advantage_estimation(reward, value, done, bootstrap_value, discount, gae_lambda, advantage_dest=None, return_dest=None)

	Time-major inputs, optional other dimensions: [T], [T,B], etc. Similar
to discount_return() but using Generalized Advantage Estimation to
compute advantages and returns.

	
rlpyt.algos.utils.discount_return_n_step(reward, done, n_step, discount, return_dest=None, done_n_dest=None, do_truncated=False)

	Time-major inputs, optional other dimension: [T], [T,B], etc. Computes
n-step discounted returns within the timeframe of the of given rewards. If
do_truncated==False, then only compute at time-steps with full n-step
future rewards are provided (i.e. not at last n-steps–output shape will
change!). Returns n-step returns as well as n-step done signals, which is
True if done=True at any future time before the n-step target bootstrap
would apply (bootstrap in the algo, not here).

	
rlpyt.algos.utils.valid_from_done(done)

	Returns a float mask which is zero for all time-steps after a
done=True is signaled. This function operates on the leading dimension
of done, assumed to correspond to time [T,…], other dimensions are
preserved.

	
rlpyt.algos.utils.discount_return_tl(reward, done, bootstrap_value, discount, timeout, value, return_dest=None)

	Like discount_return(), above, except uses bootstrapping where ‘done’
is due to env horizon time-limit (tl=Time-Limit). (In the algo, should
not train on samples where timeout=True.)

	
rlpyt.algos.utils.generalized_advantage_estimation_tl(reward, value, done, bootstrap_value, discount, gae_lambda, timeout, advantage_dest=None, return_dest=None)

	Like generalized_advantage_estimation(), above, except uses
bootstrapping where ‘done’ is due to env horizon time-limit
(tl=Time-Limit). (In the algo, should not train on samples where
timeout=True.)

Synchronize

	
class rlpyt.utils.synchronize.RWLock

	Multiple simultaneous readers, one writer.

	
rlpyt.utils.synchronize.drain_queue(queue_obj, n_sentinel=0, guard_sentinel=False)

	Empty a multiprocessing queue object, with options to protect against
the delay between queue.put() and queue.get(). Returns a list of
the queue contents.

With n_sentinel=0, simply call queue.get(block=False) until
queue.Empty exception (which can still happen slightly after another
process called queue.put()).

With n_sentinel>1, call queue.get() until n_sentinel None
objects have been returned (marking that each put() process has finished).

With guard_sentinel=True (need n_sentinel=0), stops if a None
is retrieved, and puts it back into the queue, so it can do a blocking
drain later with n_sentinel>1.

	
rlpyt.utils.synchronize.find_port(offset)

	Find a unique open port, for initializing torch.distributed in
multiple separate multi-GPU runs on one machine.

Quick Arguments

	
rlpyt.utils.quick_args.save__init__args(values, underscore=False, overwrite=False, subclass_only=False)

	Use in __init__() only; assign all args/kwargs to instance attributes.
To maintain precedence of args provided to subclasses, call this in the
subclass before super().__init__() if save__init__args() also appears
in base class, or use overwrite=True. With subclass_only==True, only
args/kwargs listed in current subclass apply.

Progress Bar

	
class rlpyt.utils.prog_bar.ProgBarCounter(total_count)

	Dynamic display of progress bar in terminal, for example to mark progress
(and estimate time to completion) of RL iterations toward the next logging
update. credit: rllab.

Seed

	
rlpyt.utils.seed.set_seed(seed)

	Sets random.seed, np.random.seed, torch.manual_seed,
torch.cuda.manual_seed.

	
rlpyt.utils.seed.make_seed()

	Returns a random number between [0, 10000], using timing jitter.

This has a white noise spectrum and gives unique values for multiple
simultaneous processes…some simpler attempts did not achieve that, but
there’s probably a better way.

Logger

The logger is nearly a direct copy from rllab, which implemented it as a module. It provides convenient recording of diagnostics to the terminal, which is also saved to debug.log, tabular diagnostics to comma-separated file, progress.csv, and training snapshot files (e.g. agent parameters), params.pkl. The logger is not extensively documented here; its usage is mostly exposed in the examples.

	
rlpyt.utils.logging.context.logger_context(log_dir, run_ID, name, log_params=None, snapshot_mode='none', override_prefix=False, use_summary_writer=False)

	Use as context manager around calls to the runner’s train() method.
Sets up the logger directory and filenames. Unless override_prefix is
True, this function automatically prepends log_dir with the rlpyt
logging directory and the date: path-to-rlpyt/data/yyyymmdd/hhmmss
(data/ is in the gitignore), and appends with /run_{run_ID} to
separate multiple runs of the same settings. Saves hyperparameters
provided in log_params to params.json, along with experiment name
and run_ID.

Input snapshot_mode refers to how often the logger actually saves the
snapshot (e.g. may include agent parameters). The runner calls on the
logger to save the snapshot at every iteration, but the input
snapshot_mode sets how often the logger actually saves (e.g. snapshot
may include agent parameters). Possible modes include (but check inside
the logger itself):

	“none”: don’t save at all

	“last”: always save and overwrite the previous

	“all”: always save and keep each iteration

	“gap”: save periodically and keep each (will also need to set the gap, not done here)

The cleanup operations after the yield close files but might not be
strictly necessary if not launching another training session in the same
python process.

	
rlpyt.utils.logging.context.add_exp_param(param_name, param_val, exp_dir=None, overwrite=False)

	Puts a param in all experiments in immediate subdirectories.
So you can write a new distinguising param after the fact, perhaps
reflecting a combination of settings.

	
rlpyt.utils.logging.context.check_progress(exp_dir=None)

	Print to stdout the number of lines in all progress.csv files in
the directory. Call like:

python -c 'from rlpyt.util.logging.context import check_progress;
check_progress('path_to_dir')

Creating and Launching Experiments

Some utilities are included for creating and launching experiments comprised of multiple individual learning runs, e.g. for hyperparameter sweeps. To date, these include functions for launching locally on a machine, so launching into the cloud may require different tooling. Many experiments can be queued on a given hardware resource, and they will be cycled through to run in sequence (e.g. a desktop with 4 GPUs and each run getting exclusive use of 2 GPUs).

Launching

	
rlpyt.utils.launching.exp_launcher.run_experiments(script, affinity_code, experiment_title, runs_per_setting, variants, log_dirs, common_args=None, runs_args=None, set_egl_device=False)

	Call in a script to run a set of experiments locally on a machine. Uses
the launch_experiment() function for each individual run, which is a
call to the script file. The number of experiments to run at the same
time is determined from the affinity_code, which expresses the hardware
resources of the machine and how much resource each run gets (e.g. 4 GPU
machine, 2 GPUs per run). Experiments are queued and run in sequence, with
the intention to avoid hardware overlap. Inputs variants and log_dirs
should be lists of the same length, containing each experiment configuration
and where to save its log files (which have the same name, so can’t exist
in the same folder).

Hint

To monitor progress, view the num_launched.txt file and experiments_tree.txt
file in the experiment root directory, and also check the length of each
progress.csv file, e.g. wc -l experiment-directory/.../run_*/progress.csv.

	
rlpyt.utils.launching.exp_launcher.launch_experiment(script, run_slot, affinity_code, log_dir, variant, run_ID, args, python_executable=None, set_egl_device=False)

	Launches one learning run using subprocess.Popen() to call the
python script. Calls the script as:
python {script} {slot_affinity_code} {log_dir} {run_ID} {*args}

If affinity_code["all_cpus"] is provided, then the call is prepended
with tasket -c .. and the listed cpus (this is the most sure way to
keep the run limited to these CPU cores). Also saves the variant file.
Returns the process handle, which can be monitored.

Use set_egl_device=True to set an environment variable
EGL_DEVICE_ID equal to the same value as the cuda index for the
algorithm. For example, can use with DMControl environment modified
to look for this environment variable when selecting a GPU for headless
rendering.

Variants

Some simple tools are provided for creating hyperparameter value variants.

	
class rlpyt.utils.launching.variant.VariantLevel(keys, values, dir_names)

	A namedtuple which describes a set of hyperparameter settings.

Input keys should be a list of tuples, where each tuple is the sequence of keys to navigate down the configuration dictionary to the value.

Input values should be a list of lists, where each element of the outer list is a complete set of values, and position in the inner list corresponds to the key at that position in the keys list, i.e. each combination must be explicitly written.

Input dir_names should have the same length as values, and includeunique paths for logging results from each value combination.

	
rlpyt.utils.launching.variant.make_variants(*variant_levels)

	Takes in any number of VariantLevel objects and crosses them in order.
Returns the resulting lists of full variant and log directories. Every
set of values in one level is paired with every set of values in the next
level, e.g. if two combinations are specified in one level and three
combinations in the next, then six total configuations will result.

Use in the script to create and run a set of learning runs.

	
rlpyt.utils.launching.variant._cross_variants(prev_variants, prev_log_dirs, variant_level)

	For every previous variant, make all combinations with new values.

	
rlpyt.utils.launching.variant.load_variant(log_dir)

	Loads the variant.json file from the directory.

	
rlpyt.utils.launching.variant.save_variant(variant, log_dir)

	Saves a variant.json file to the directory.

	
rlpyt.utils.launching.variant.update_config(default, variant)

	Performs deep update on all dict structures from variant, updating only
individual fields. Any field in variant must be present in default,
else raises KeyError (helps prevent mistakes). Operates recursively to
return a new dictionary.

Affinity

The hardware affinity is used for several purposes: 1) the experiment launcher uses it to determine how many concurrent experiments to run, 2) runners use it to determine GPU device selection, 3) parallel samplers use it to determine the number of worker processes, and 4) multi-GPU and asynchronous runners use it to determine the number of parallel processes. The main intent of the implemented utilities is to take as input the total amount of hardware resources in the computer (CPU & GPU) and the amount of resources to be dedicated to each job, and then to divide resources evenly.

Example

An 8-GPU, 40-CPU machine would have 5 CPU assigned to each GPU. 1 GPU per run would set up 8 concurrent experiments, with each sampler using the 5 CPU. 2 GPU per run with synchronous runner would set up 4 concurrent experiments.

	
rlpyt.utils.launching.affinity.encode_affinity(n_cpu_core=1, n_gpu=0, contexts_per_gpu=1, gpu_per_run=1, cpu_per_run=1, cpu_per_worker=1, cpu_reserved=0, hyperthread_offset=None, n_socket=None, run_slot=None, async_sample=False, sample_gpu_per_run=0, optim_sample_share_gpu=False, alternating=False, set_affinity=True)

	Encodes the hardware configuration into a string (with meanings defined
in this file) which can be passed as a command line argument to call the
training script. Use in overall experiments setup script to specify
computer and experiment resources into run_experiments().

We refer to an “experiment” as an individual learning run, i.e. one set of
hyperparameters and which does not interact with other runs.

	Parameters

	
	n_cpu_core (int) – Total number of phyical cores to use on machine (not virtual)

	n_gpu (int) – Total number of GPUs to use on machine

	contexts_per_gpu (int) – How many experiment to share each GPU

	gpu_per_run (int) – How many GPUs to use per experiment (for multi-GPU optimization)

	cpu_per_run (int) – If not using GPU, specify how macores per experiment

	cpu_per_worker (int) – CPU cores per sampler worker; 1 unless environment is multi-threaded

	cpu_reserved (int) – Number of CPUs to reserve per GPU, and not allow sampler to use them

	hyperthread_offset (int) – Typically the number of physical cores, since they are labeled 0-x, and hyperthreads as (x+1)-2x; use 0 to disable hyperthreads, None to auto-detect

	n_socket (int) – Number of CPU sockets in machine; tries to keep CPUs grouped on same socket, and match socket-to-GPU affinity

	run_slot (int) – Which hardware slot to use; leave None into run_experiments(), but specified for inidividual train script

	async_sample (bool) – True if asynchronous sampling/optimization mode; different affinity structure needed

	sample_gpu_per_run (int) – In asynchronous mode only, number of action-server GPUs per experiment

	optim_sample_share_gpu (bool) – In asynchronous mode only, whether to use same GPU(s) for both training and sampling

	alternating (bool) – True if using alternating sampler (will make more worker assignments)

	set_affinity (bool) – False to disable runner and sampler from setting cpu affinity via psutil, maybe inappropriate in cloud machines.

	
rlpyt.utils.launching.affinity.encode_affinity(n_cpu_core=1, n_gpu=0, contexts_per_gpu=1, gpu_per_run=1, cpu_per_run=1, cpu_per_worker=1, cpu_reserved=0, hyperthread_offset=None, n_socket=None, run_slot=None, async_sample=False, sample_gpu_per_run=0, optim_sample_share_gpu=False, alternating=False, set_affinity=True)

	Encodes the hardware configuration into a string (with meanings defined
in this file) which can be passed as a command line argument to call the
training script. Use in overall experiments setup script to specify
computer and experiment resources into run_experiments().

We refer to an “experiment” as an individual learning run, i.e. one set of
hyperparameters and which does not interact with other runs.

	Parameters

	
	n_cpu_core (int) – Total number of phyical cores to use on machine (not virtual)

	n_gpu (int) – Total number of GPUs to use on machine

	contexts_per_gpu (int) – How many experiment to share each GPU

	gpu_per_run (int) – How many GPUs to use per experiment (for multi-GPU optimization)

	cpu_per_run (int) – If not using GPU, specify how macores per experiment

	cpu_per_worker (int) – CPU cores per sampler worker; 1 unless environment is multi-threaded

	cpu_reserved (int) – Number of CPUs to reserve per GPU, and not allow sampler to use them

	hyperthread_offset (int) – Typically the number of physical cores, since they are labeled 0-x, and hyperthreads as (x+1)-2x; use 0 to disable hyperthreads, None to auto-detect

	n_socket (int) – Number of CPU sockets in machine; tries to keep CPUs grouped on same socket, and match socket-to-GPU affinity

	run_slot (int) – Which hardware slot to use; leave None into run_experiments(), but specified for inidividual train script

	async_sample (bool) – True if asynchronous sampling/optimization mode; different affinity structure needed

	sample_gpu_per_run (int) – In asynchronous mode only, number of action-server GPUs per experiment

	optim_sample_share_gpu (bool) – In asynchronous mode only, whether to use same GPU(s) for both training and sampling

	alternating (bool) – True if using alternating sampler (will make more worker assignments)

	set_affinity (bool) – False to disable runner and sampler from setting cpu affinity via psutil, maybe inappropriate in cloud machines.

	
rlpyt.utils.launching.affinity.make_affinity(run_slot=0, **kwargs)

	Input same kwargs as encode_affinity(), returns the AttrDict form.

	
rlpyt.utils.launching.affinity.affinity_from_code(run_slot_affinity_code)

	Use in individual experiment script; pass output to Runner.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | Z

_

 	
 	__call__() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.dqn.dqn_agent.DqnAgent method)

 	(rlpyt.agents.pg.gaussian.GaussianPgAgent method)

 	(rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgentBase method)

 	(rlpyt.utils.collections.NamedTupleSchema method)

 	__contains__() (rlpyt.utils.collections.DocExampleNat method)

 	__getattr__() (rlpyt.utils.collections.NamedTuple method)

 	__getitem__() (rlpyt.utils.collections.DocExampleNat method)

 	__init__() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.dqn.catdqn_agent.CatDqnAgent method)

 	(rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin method)

 	(rlpyt.agents.pg.atari.AtariFfAgent method)

 	(rlpyt.agents.pg.atari.AtariLstmAgent method)

 	(rlpyt.agents.pg.mujoco.MujocoFfAgent method)

 	(rlpyt.agents.pg.mujoco.MujocoLstmAgent method)

 	(rlpyt.agents.qpg.ddpg_agent.DdpgAgent method)

 	(rlpyt.agents.qpg.sac_agent.SacAgent method)

 	(rlpyt.agents.qpg.td3_agent.Td3Agent method)

 	(rlpyt.algos.dqn.cat_dqn.CategoricalDQN method)

 	(rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.dqn.r2d1.R2D1 method)

 	(rlpyt.algos.pg.a2c.A2C method)

 	(rlpyt.algos.pg.ppo.PPO method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.sac.SAC method)

 	(rlpyt.algos.qpg.td3.TD3 method)

 	(rlpyt.models.dqn.atari_catdqn_model.AtariCatDqnModel method)

 	(rlpyt.models.dqn.atari_dqn_model.AtariDqnModel method)

 	(rlpyt.models.dqn.atari_r2d1_model.AtariR2d1Model method)

 	(rlpyt.models.pg.atari_ff_model.AtariFfModel method)

 	(rlpyt.models.pg.atari_lstm_model.AtariLstmModel method)

 	(rlpyt.models.pg.mujoco_ff_model.MujocoFfModel method)

 	(rlpyt.models.pg.mujoco_lstm_model.MujocoLstmModel method)

 	(rlpyt.models.qpg.mlp.MuMlpModel method)

 	(rlpyt.models.qpg.mlp.QofMuMlpModel method)

 	(rlpyt.runners.minibatch_rl.MinibatchRl method)

 	(rlpyt.spaces.composite.Composite method)

 	(rlpyt.spaces.float_box.FloatBox method)

 	(rlpyt.spaces.gym_wrapper.GymSpaceWrapper method)

 	(rlpyt.spaces.int_box.IntBox method)

 	
 	__setitem__() (rlpyt.utils.collections.DocExampleNat method)

 	_agent_init() (rlpyt.samplers.parallel.gpu.sampler.GpuSamplerBase method)

 	_asdict() (rlpyt.utils.collections.NamedTuple method)

 	_cross_variants() (in module rlpyt.utils.launching.variant)

 	_log_infos() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	_make() (rlpyt.utils.collections.NamedTuple method)

 	(rlpyt.utils.collections.NamedTupleSchema method)

 	_replace() (rlpyt.utils.collections.NamedTuple method)

A

 	
 	A2C (class in rlpyt.algos.pg.a2c)

 	action_server_process() (rlpyt.samplers.async_.gpu_sampler.AsyncGpuSamplerBase method)

 	ActionServer (class in rlpyt.samplers.parallel.gpu.action_server)

 	add_exp_param() (in module rlpyt.utils.logging.context)

 	advance() (rlpyt.replays.sum_tree.SumTree method)

 	advance_rnn_state() (rlpyt.agents.base.RecurrentAgentMixin method)

 	advantage() (rlpyt.models.dqn.dueling.DuelingHeadModel method)

 	affinity_from_code() (in module rlpyt.utils.launching.affinity)

 	AlternatingActionServer (class in rlpyt.samplers.parallel.gpu.action_server)

 	AlternatingRecurrentAgentMixin (class in rlpyt.agents.base)

 	AlternatingRecurrentGaussianPgAgent (class in rlpyt.agents.pg.gaussian)

 	AlternatingSampler (class in rlpyt.samplers.parallel.gpu.alternating_sampler)

 	AlternatingSamplerBase (class in rlpyt.samplers.parallel.gpu.alternating_sampler)

 	append_samples() (rlpyt.replays.base.BaseReplayBuffer method)

 	(rlpyt.replays.frame.FrameBufferMixin method)

 	(rlpyt.replays.n_step.BaseNStepReturnBuffer method)

 	(rlpyt.replays.non_sequence.prioritized.PrioritizedReplay method)

 	(rlpyt.replays.sequence.n_step.SequenceNStepReturnBuffer method)

 	(rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplay method)

 	async_cpu() (rlpyt.agents.base.BaseAgent method)

 	async_initialize() (rlpyt.algos.base.RlAlgorithm method)

 	(rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.samplers.async_.base.AsyncSamplerMixin method)

 	AsyncActionServer (class in rlpyt.samplers.async_.action_server)

 	AsyncAlternatingActionServer (class in rlpyt.samplers.async_.action_server)

 	AsyncAlternatingSampler (class in rlpyt.samplers.async_.alternating_sampler)

 	AsyncAlternatingSamplerBase (class in rlpyt.samplers.async_.alternating_sampler)

 	AsyncCpuSampler (class in rlpyt.samplers.async_.cpu_sampler)

 	AsyncGpuSampler (class in rlpyt.samplers.async_.gpu_sampler)

 	AsyncGpuSamplerBase (class in rlpyt.samplers.async_.gpu_sampler)

 	
 	AsyncNoOverlapAlternatingActionServer (class in rlpyt.samplers.async_.action_server)

 	AsyncNoOverlapAlternatingSampler (class in rlpyt.samplers.async_.alternating_sampler)

 	AsyncParallelSamplerMixin (class in rlpyt.samplers.async_.base)

 	AsyncPrioritizedReplayBuffer (class in rlpyt.replays.non_sequence.prioritized)

 	AsyncPrioritizedReplayFrameBuffer (class in rlpyt.replays.non_sequence.frame)

 	AsyncPrioritizedSequenceReplayBuffer (class in rlpyt.replays.sequence.prioritized)

 	AsyncPrioritizedSequenceReplayFrameBuffer (class in rlpyt.replays.sequence.frame)

 	AsyncReplayBufferMixin (class in rlpyt.replays.async_)

 	AsyncRl (class in rlpyt.runners.async_rl)

 	AsyncRlBase (class in rlpyt.runners.async_rl)

 	AsyncRlEval (class in rlpyt.runners.async_rl)

 	AsyncSamplerMixin (class in rlpyt.samplers.async_.base)

 	AsyncSerialSampler (class in rlpyt.samplers.async_.serial_sampler)

 	AsyncSumTree (class in rlpyt.replays.sum_tree)

 	AsyncTlPrioritizedReplayBuffer (class in rlpyt.replays.non_sequence.time_limit)

 	AsyncTlUniformReplayBuffer (class in rlpyt.replays.non_sequence.time_limit)

 	AsyncUniformReplayBuffer (class in rlpyt.replays.non_sequence.uniform)

 	AsyncUniformReplayFrameBuffer (class in rlpyt.replays.non_sequence.frame)

 	AsyncUniformSequenceReplayBuffer (class in rlpyt.replays.sequence.uniform)

 	AsyncUniformSequenceReplayFrameBuffer (class in rlpyt.replays.sequence.frame)

 	AtariCatDqnModel (class in rlpyt.models.dqn.atari_catdqn_model)

 	AtariDqnModel (class in rlpyt.models.dqn.atari_dqn_model)

 	AtariEnv (class in rlpyt.envs.atari.atari_env)

 	AtariFfAgent (class in rlpyt.agents.pg.atari)

 	AtariFfModel (class in rlpyt.models.pg.atari_ff_model)

 	AtariLstmAgent (class in rlpyt.agents.pg.atari)

 	AtariLstmModel (class in rlpyt.models.pg.atari_lstm_model)

 	AtariMixin (class in rlpyt.agents.pg.atari)

 	AtariR2d1Model (class in rlpyt.models.dqn.atari_r2d1_model)

 	AtariTrajInfo (class in rlpyt.envs.atari.atari_env)

 	AttrDict (class in rlpyt.utils.collections)

B

 	
 	backward() (rlpyt.models.utils.ScaleGrad static method)

 	BaseAgent (class in rlpyt.agents.base)

 	BaseCollector (class in rlpyt.samplers.collectors)

 	BaseEvalCollector (class in rlpyt.samplers.collectors)

 	BaseNStepReturnBuffer (class in rlpyt.replays.n_step)

 	BaseReplayBuffer (class in rlpyt.replays.base)

 	BaseRunner (class in rlpyt.runners.base)

 	
 	BaseSampler (class in rlpyt.samplers.base)

 	buffer_from_example() (in module rlpyt.utils.buffer)

 	buffer_func() (in module rlpyt.utils.buffer)

 	buffer_method() (in module rlpyt.utils.buffer)

 	buffer_to() (in module rlpyt.utils.buffer)

 	build_array() (in module rlpyt.utils.buffer)

 	build_ctrl() (rlpyt.runners.async_rl.AsyncRlBase method)

C

 	
 	CatDqnAgent (class in rlpyt.agents.dqn.catdqn_agent)

 	Categorical (class in rlpyt.distributions.categorical)

 	CategoricalDQN (class in rlpyt.algos.dqn.cat_dqn)

 	CategoricalEpsilonGreedy (class in rlpyt.distributions.epsilon_greedy)

 	CategoricalPgAgent (class in rlpyt.agents.pg.categorical)

 	check_progress() (in module rlpyt.utils.logging.context)

 	collect_batch() (rlpyt.samplers.collectors.BaseCollector method)

 	collect_evaluation() (rlpyt.samplers.collectors.BaseEvalCollector method)

 	collector_initialize() (rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin method)

 	Composite (class in rlpyt.spaces.composite)

 	compute_input_priorities() (rlpyt.algos.dqn.r2d1.R2D1 method)

 	
 	compute_returns() (rlpyt.replays.n_step.BaseNStepReturnBuffer method)

 	conv2d_output_shape() (in module rlpyt.models.utils)

 	Conv2dHeadModel (class in rlpyt.models.conv2d)

 	Conv2dModel (class in rlpyt.models.conv2d)

 	conv_out_size() (rlpyt.models.conv2d.Conv2dModel method)

 	convert() (rlpyt.spaces.gym_wrapper.GymSpaceWrapper method)

 	copy() (rlpyt.utils.collections.AttrDict method)

 	CpuEvalCollector (class in rlpyt.samplers.parallel.cpu.collectors)

 	CpuResetCollector (class in rlpyt.samplers.parallel.cpu.collectors)

 	CpuSampler (class in rlpyt.samplers.parallel.cpu.sampler)

 	CpuWaitResetCollector (class in rlpyt.samplers.parallel.cpu.collectors)

D

 	
 	data_parallel() (rlpyt.agents.base.BaseAgent method)

 	DDPG (class in rlpyt.algos.qpg.ddpg)

 	DdpgAgent (class in rlpyt.agents.qpg.ddpg_agent)

 	DecorrelatingStartCollector (class in rlpyt.samplers.collectors)

 	discount_return() (in module rlpyt.algos.utils)

 	discount_return_n_step() (in module rlpyt.algos.utils)

 	discount_return_tl() (in module rlpyt.algos.utils)

 	DiscreteMixin (class in rlpyt.distributions.discrete)

 	
 	Distribution (class in rlpyt.distributions.base)

 	DistributionalDuelingHeadModel (class in rlpyt.models.dqn.dueling)

 	DistributionalHeadModel (class in rlpyt.models.dqn.atari_catdqn_model)

 	DocExampleNat (class in rlpyt.utils.collections)

 	DQN (class in rlpyt.algos.dqn.dqn)

 	DqnAgent (class in rlpyt.agents.dqn.dqn_agent)

 	drain_queue() (in module rlpyt.utils.synchronize)

 	DuelingHeadModel (class in rlpyt.models.dqn.dueling)

E

 	
 	empty() (in module rlpyt.utils.misc)

 	encode_affinity() (in module rlpyt.utils.launching.affinity), [1]

 	entropy() (rlpyt.distributions.base.Distribution method)

 	(rlpyt.distributions.gaussian.Gaussian method)

 	Env (class in rlpyt.envs.base)

 	EnvInfoWrapper (class in rlpyt.envs.gym)

 	EpsilonGreedy (class in rlpyt.distributions.epsilon_greedy)

 	EpsilonGreedyAgentMixin (class in rlpyt.agents.dqn.epsilon_greedy)

 	eval_mode() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.base.RecurrentAgentMixin method)

 	(rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin method)

 	evaluate_agent() (rlpyt.runners.minibatch_rl.MinibatchRlEval method)

 	(rlpyt.samplers.async_.cpu_sampler.AsyncCpuSampler method)

 	(rlpyt.samplers.async_.serial_sampler.AsyncSerialSampler method)

 	(rlpyt.samplers.base.BaseSampler method)

 	(rlpyt.samplers.parallel.base.ParallelSamplerBase method)

 	(rlpyt.samplers.parallel.cpu.sampler.CpuSampler method)

 	(rlpyt.samplers.parallel.gpu.sampler.GpuSamplerBase method)

 	(rlpyt.samplers.serial.sampler.SerialSampler method)

 	
 	extract_batch() (rlpyt.replays.non_sequence.n_step.NStepReturnBuffer method)

 	(rlpyt.replays.sequence.n_step.SequenceNStepReturnBuffer method)

 	extract_observation() (rlpyt.replays.non_sequence.frame.NStepFrameBuffer method)

 	(rlpyt.replays.non_sequence.n_step.NStepReturnBuffer method)

 	(rlpyt.replays.sequence.frame.SequenceNStepFrameBuffer method)

 	extract_sequences() (in module rlpyt.utils.misc)

F

 	
 	find_port() (in module rlpyt.utils.synchronize)

 	FloatBox (class in rlpyt.spaces.float_box)

 	forward() (rlpyt.models.conv2d.Conv2dHeadModel method)

 	(rlpyt.models.conv2d.Conv2dModel method)

 	(rlpyt.models.dqn.atari_catdqn_model.AtariCatDqnModel method)

 	(rlpyt.models.dqn.atari_dqn_model.AtariDqnModel method)

 	(rlpyt.models.dqn.dueling.DuelingHeadModel method)

 	(rlpyt.models.mlp.MlpModel method)

 	(rlpyt.models.pg.atari_ff_model.AtariFfModel method)

 	(rlpyt.models.pg.atari_lstm_model.AtariLstmModel method)

 	(rlpyt.models.pg.mujoco_ff_model.MujocoFfModel method)

 	(rlpyt.models.pg.mujoco_lstm_model.MujocoLstmModel method)

 	(rlpyt.models.utils.ScaleGrad static method)

 	
 	FrameBufferMixin (class in rlpyt.replays.frame)

 	from_onehot() (in module rlpyt.utils.tensor)

 	(rlpyt.distributions.discrete.DiscreteMixin method)

G

 	
 	Gaussian (class in rlpyt.distributions.gaussian)

 	GaussianPgAgent (class in rlpyt.agents.pg.gaussian)

 	generalized_advantage_estimation() (in module rlpyt.algos.utils)

 	generalized_advantage_estimation_tl() (in module rlpyt.algos.utils)

 	get() (rlpyt.utils.collections.DocExampleNat method)

 	get_itr_snapshot() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	get_leading_dims() (in module rlpyt.utils.buffer)

 	get_n_itr() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	
 	get_traj_info_kwargs() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	GpuEvalCollector (class in rlpyt.samplers.parallel.gpu.collectors)

 	GpuResetCollector (class in rlpyt.samplers.parallel.gpu.collectors)

 	GpuSampler (class in rlpyt.samplers.parallel.gpu.sampler)

 	GpuSamplerBase (class in rlpyt.samplers.parallel.gpu.sampler)

 	GpuWaitResetCollector (class in rlpyt.samplers.parallel.gpu.collectors)

 	GymEnvWrapper (class in rlpyt.envs.gym)

 	GymSpaceWrapper (class in rlpyt.spaces.gym_wrapper)

I

 	
 	infer_leading_dims() (in module rlpyt.utils.array)

 	(in module rlpyt.utils.tensor)

 	initialize() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.dqn.dqn_agent.DqnAgent method)

 	(rlpyt.agents.pg.gaussian.GaussianPgAgent method)

 	(rlpyt.agents.qpg.ddpg_agent.DdpgAgent method)

 	(rlpyt.algos.base.RlAlgorithm method)

 	(rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.pg.base.PolicyGradientAlgo method)

 	(rlpyt.algos.pg.ppo.PPO method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.sac.SAC method)

 	(rlpyt.samplers.async_.cpu_sampler.AsyncCpuSampler method)

 	(rlpyt.samplers.async_.gpu_sampler.AsyncGpuSamplerBase method)

 	(rlpyt.samplers.async_.serial_sampler.AsyncSerialSampler method)

 	(rlpyt.samplers.base.BaseSampler method)

 	(rlpyt.samplers.parallel.base.ParallelSamplerBase method)

 	(rlpyt.samplers.parallel.gpu.alternating_sampler.AlternatingSamplerBase method)

 	(rlpyt.samplers.serial.sampler.SerialSampler method)

 	
 	initialize_replay_buffer() (rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.dqn.r2d1.R2D1 method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.sac.SAC method)

 	initialize_worker() (in module rlpyt.samplers.parallel.worker)

 	IntBox (class in rlpyt.spaces.int_box)

 	inv_value_scale() (rlpyt.algos.dqn.r2d1.R2D1 method)

 	is_namedarraytuple() (in module rlpyt.utils.collections)

 	is_namedarraytuple_class() (in module rlpyt.utils.collections)

 	is_namedtuple() (in module rlpyt.utils.collections)

 	is_namedtuple_class() (in module rlpyt.utils.collections)

 	items() (rlpyt.utils.collections.DocExampleNat method)

 	iterate_mb_idxs() (in module rlpyt.utils.misc)

K

 	
 	kl() (rlpyt.distributions.base.Distribution method)

L

 	
 	launch_experiment() (in module rlpyt.utils.launching.exp_launcher)

 	launch_memcpy() (rlpyt.runners.async_rl.AsyncRlBase method)

 	launch_optimizer_workers() (rlpyt.runners.async_rl.AsyncRlBase method)

 	launch_workers() (rlpyt.runners.sync_rl.SyncRlMixin method)

 	likelihood_ratio() (rlpyt.distributions.base.Distribution method)

 	load_optim_state_dict() (rlpyt.algos.base.RlAlgorithm method)

 	load_state_dict() (rlpyt.agents.base.BaseAgent method)

 	load_variant() (in module rlpyt.utils.launching.variant)

 	log_diagnostics() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	
 	log_likelihood() (rlpyt.distributions.base.Distribution method)

 	(rlpyt.distributions.gaussian.Gaussian method)

 	logger_context() (in module rlpyt.utils.logging.context)

 	loss() (rlpyt.algos.dqn.cat_dqn.CategoricalDQN method)

 	(rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.dqn.r2d1.R2D1 method)

 	(rlpyt.algos.pg.a2c.A2C method)

 	(rlpyt.algos.pg.ppo.PPO method)

 	(rlpyt.algos.qpg.sac.SAC method)

M

 	
 	make() (in module rlpyt.envs.gym)

 	make_affinity() (in module rlpyt.utils.launching.affinity)

 	make_env_to_model_kwargs() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.pg.atari.AtariMixin method)

 	(rlpyt.agents.pg.mujoco.MujocoMixin method)

 	make_seed() (in module rlpyt.utils.seed)

 	make_variants() (in module rlpyt.utils.launching.variant)

 	make_vec_eps() (rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin method)

 	mean_entropy() (rlpyt.distributions.base.Distribution method)

 	mean_kl() (rlpyt.distributions.base.Distribution method)

 	mean_perplexity() (rlpyt.distributions.base.Distribution method)

 	
 	memory_copier() (in module rlpyt.runners.async_rl)

 	MinibatchRl (class in rlpyt.runners.minibatch_rl)

 	MinibatchRlBase (class in rlpyt.runners.minibatch_rl)

 	MinibatchRlEval (class in rlpyt.runners.minibatch_rl)

 	MlpModel (class in rlpyt.models.mlp)

 	mu_loss() (rlpyt.algos.qpg.ddpg.DDPG method)

 	MujocoFfAgent (class in rlpyt.agents.pg.mujoco)

 	MujocoFfModel (class in rlpyt.models.pg.mujoco_ff_model)

 	MujocoLstmAgent (class in rlpyt.agents.pg.mujoco)

 	MujocoLstmModel (class in rlpyt.models.pg.mujoco_lstm_model)

 	MujocoMixin (class in rlpyt.agents.pg.mujoco)

 	MuMlpModel (class in rlpyt.models.qpg.mlp)

N

 	
 	n (rlpyt.spaces.int_box.IntBox attribute)

 	NamedArrayTuple (class in rlpyt.utils.collections)

 	namedarraytuple() (in module rlpyt.utils.collections)

 	namedarraytuple_like() (in module rlpyt.utils.collections)

 	NamedArrayTupleSchema (class in rlpyt.utils.collections)

 	NamedArrayTupleSchema_like() (in module rlpyt.utils.collections)

 	NamedTuple (class in rlpyt.utils.collections)

 	NamedTupleSchema (class in rlpyt.utils.collections)

 	names (rlpyt.spaces.composite.Composite attribute)

 	
 	NoOverlapAlternatingActionServer (class in rlpyt.samplers.parallel.gpu.action_server)

 	NoOverlapAlternatingSampler (class in rlpyt.samplers.parallel.gpu.alternating_sampler)

 	np_mp_array() (in module rlpyt.utils.buffer)

 	NStepFrameBuffer (class in rlpyt.replays.non_sequence.frame)

 	NStepReturnBuffer (class in rlpyt.replays.non_sequence.n_step)

 	NStepTimeLimitBuffer (class in rlpyt.replays.non_sequence.time_limit)

 	null_value() (rlpyt.spaces.base.Space method)

 	(rlpyt.spaces.composite.Composite method)

 	(rlpyt.spaces.gym_wrapper.GymSpaceWrapper method)

 	numpify_buffer() (in module rlpyt.utils.buffer)

O

 	
 	obtain_samples() (rlpyt.samplers.async_.base.AsyncParallelSamplerMixin method)

 	(rlpyt.samplers.async_.cpu_sampler.AsyncCpuSampler method)

 	(rlpyt.samplers.async_.serial_sampler.AsyncSerialSampler method)

 	(rlpyt.samplers.base.BaseSampler method)

 	(rlpyt.samplers.parallel.base.ParallelSamplerBase method)

 	(rlpyt.samplers.parallel.cpu.sampler.CpuSampler method)

 	(rlpyt.samplers.parallel.gpu.sampler.GpuSamplerBase method)

 	(rlpyt.samplers.serial.sampler.SerialSampler method)

 	optim_initialize() (rlpyt.algos.base.RlAlgorithm method)

 	(rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.sac.SAC method)

 	
 	optim_startup() (rlpyt.runners.async_rl.AsyncRlBase method)

 	optim_state_dict() (rlpyt.algos.base.RlAlgorithm method)

 	optimize_agent() (rlpyt.algos.base.RlAlgorithm method)

 	(rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.dqn.r2d1.R2D1 method)

 	(rlpyt.algos.pg.a2c.A2C method)

 	(rlpyt.algos.pg.ppo.PPO method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.sac.SAC method)

 	output_size (rlpyt.models.conv2d.Conv2dHeadModel attribute)

 	(rlpyt.models.mlp.MlpModel attribute)

P

 	
 	ParallelSamplerBase (class in rlpyt.samplers.parallel.base)

 	perplexity() (rlpyt.distributions.base.Distribution method)

 	pi() (rlpyt.agents.qpg.sac_agent.SacAgent method)

 	PiMlpModel (class in rlpyt.models.qpg.mlp)

 	PolicyGradientAlgo (class in rlpyt.algos.pg.base)

 	PPO (class in rlpyt.algos.pg.ppo)

 	print_tree() (rlpyt.replays.sum_tree.SumTree method)

 	
 	PrioritizedReplay (class in rlpyt.replays.non_sequence.prioritized)

 	PrioritizedReplayBuffer (class in rlpyt.replays.non_sequence.prioritized)

 	PrioritizedReplayFrameBuffer (class in rlpyt.replays.non_sequence.frame)

 	PrioritizedSequenceReplay (class in rlpyt.replays.sequence.prioritized)

 	PrioritizedSequenceReplayBuffer (class in rlpyt.replays.sequence.prioritized)

 	PrioritizedSequenceReplayFrameBuffer (class in rlpyt.replays.sequence.frame)

 	process_returns() (rlpyt.algos.pg.base.PolicyGradientAlgo method)

 	ProgBarCounter (class in rlpyt.utils.prog_bar)

Q

 	
 	q() (rlpyt.agents.qpg.ddpg_agent.DdpgAgent method)

 	(rlpyt.agents.qpg.sac_agent.SacAgent method)

 	(rlpyt.agents.qpg.td3_agent.Td3Agent method)

 	
 	q_at_mu() (rlpyt.agents.qpg.ddpg_agent.DdpgAgent method)

 	q_loss() (rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.td3.TD3 method)

 	QofMuMlpModel (class in rlpyt.models.qpg.mlp)

R

 	
 	R2D1 (class in rlpyt.algos.dqn.r2d1)

 	R2d1Agent (class in rlpyt.agents.dqn.r2d1_agent)

 	R2d1AgentBase (class in rlpyt.agents.dqn.r2d1_agent)

 	RecurrentAgentMixin (class in rlpyt.agents.base)

 	RecurrentGaussianPgAgent (class in rlpyt.agents.pg.gaussian)

 	RecurrentGaussianPgAgentBase (class in rlpyt.agents.pg.gaussian)

 	recv_shared_memory() (rlpyt.agents.base.BaseAgent method)

 	reset() (rlpyt.agents.base.RecurrentAgentMixin method)

 	(rlpyt.envs.atari.atari_env.AtariEnv method)

 	(rlpyt.envs.base.Env method)

 	(rlpyt.envs.gym.GymEnvWrapper method)

 	
 	reset_if_needed() (rlpyt.samplers.collectors.BaseCollector method)

 	reset_one() (rlpyt.agents.base.RecurrentAgentMixin method)

 	restore_leading_dims() (in module rlpyt.utils.tensor)

 	revert() (rlpyt.spaces.gym_wrapper.GymSpaceWrapper method)

 	RlAlgorithm (class in rlpyt.algos.base)

 	run_async_sampler() (in module rlpyt.runners.async_rl)

 	run_async_sampler_eval() (in module rlpyt.runners.async_rl)

 	run_experiments() (in module rlpyt.utils.launching.exp_launcher)

 	RWLock (class in rlpyt.utils.synchronize)

S

 	
 	SAC (class in rlpyt.algos.qpg.sac)

 	SacAgent (class in rlpyt.agents.qpg.sac_agent)

 	sample() (rlpyt.distributions.base.Distribution method)

 	(rlpyt.distributions.categorical.Categorical method)

 	(rlpyt.distributions.epsilon_greedy.CategoricalEpsilonGreedy method)

 	(rlpyt.distributions.epsilon_greedy.EpsilonGreedy method)

 	(rlpyt.distributions.gaussian.Gaussian method)

 	(rlpyt.replays.sum_tree.SumTree method)

 	(rlpyt.spaces.base.Space method)

 	(rlpyt.spaces.composite.Composite method)

 	(rlpyt.spaces.float_box.FloatBox method)

 	(rlpyt.spaces.gym_wrapper.GymSpaceWrapper method)

 	(rlpyt.spaces.int_box.IntBox method)

 	sample_batch() (rlpyt.replays.base.BaseReplayBuffer method)

 	(rlpyt.replays.non_sequence.prioritized.PrioritizedReplay method)

 	(rlpyt.replays.non_sequence.uniform.UniformReplay method)

 	(rlpyt.replays.sequence.prioritized.PrioritizedSequenceReplay method)

 	(rlpyt.replays.sequence.uniform.UniformSequenceReplay method)

 	sample_idxs() (rlpyt.replays.non_sequence.uniform.UniformReplay method)

 	(rlpyt.replays.sequence.uniform.UniformSequenceReplay method)

 	sample_loglikelihood() (rlpyt.distributions.gaussian.Gaussian method)

 	sample_mode() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.base.RecurrentAgentMixin method)

 	(rlpyt.agents.dqn.epsilon_greedy.EpsilonGreedyAgentMixin method)

 	samples_to_buffer() (rlpyt.algos.dqn.dqn.DQN method)

 	(rlpyt.algos.qpg.ddpg.DDPG method)

 	(rlpyt.algos.qpg.sac.SAC method)

 	sampling_process() (in module rlpyt.samplers.parallel.worker)

 	save__init__args() (in module rlpyt.utils.quick_args)

 	save_itr_snapshot() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	save_variant() (in module rlpyt.utils.launching.variant)

 	ScaleGrad (class in rlpyt.models.utils)

 	select_at_indexes() (in module rlpyt.utils.array)

 	(in module rlpyt.utils.tensor)

 	send_shared_memory() (rlpyt.agents.base.BaseAgent method)

 	SequenceNStepFrameBuffer (class in rlpyt.replays.sequence.frame)

 	SequenceNStepReturnBuffer (class in rlpyt.replays.sequence.n_step)

 	SerialSampler (class in rlpyt.samplers.serial.sampler)

 	
 	serve_actions() (rlpyt.samplers.parallel.gpu.action_server.ActionServer method)

 	serve_actions_evaluation() (rlpyt.samplers.async_.action_server.AsyncActionServer method)

 	(rlpyt.samplers.async_.action_server.AsyncAlternatingActionServer method)

 	(rlpyt.samplers.async_.action_server.AsyncNoOverlapAlternatingActionServer method)

 	(rlpyt.samplers.parallel.gpu.action_server.ActionServer method)

 	set_clip() (rlpyt.distributions.gaussian.Gaussian method)

 	set_epsilon() (rlpyt.distributions.epsilon_greedy.EpsilonGreedy method)

 	set_noise_clip() (rlpyt.distributions.gaussian.Gaussian method)

 	set_seed() (in module rlpyt.utils.seed)

 	set_squash() (rlpyt.distributions.gaussian.Gaussian method)

 	set_std() (rlpyt.distributions.gaussian.Gaussian method)

 	set_z() (rlpyt.distributions.epsilon_greedy.CategoricalEpsilonGreedy method)

 	shape (rlpyt.spaces.composite.Composite attribute)

 	Space (class in rlpyt.spaces.base)

 	spaces (rlpyt.envs.gym.GymEnvWrapper attribute)

 	(rlpyt.spaces.composite.Composite attribute)

 	start_agent() (rlpyt.samplers.collectors.BaseCollector method)

 	start_envs() (rlpyt.samplers.collectors.BaseCollector method)

 	(rlpyt.samplers.collectors.DecorrelatingStartCollector method)

 	startup() (rlpyt.runners.async_rl.AsyncRlBase method)

 	(rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	state_dict() (rlpyt.agents.base.BaseAgent method)

 	step() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.dqn.catdqn_agent.CatDqnAgent method)

 	(rlpyt.agents.dqn.dqn_agent.DqnAgent method)

 	(rlpyt.agents.dqn.r2d1_agent.R2d1AgentBase method)

 	(rlpyt.agents.pg.gaussian.GaussianPgAgent method)

 	(rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgentBase method)

 	(rlpyt.agents.qpg.ddpg_agent.DdpgAgent method)

 	(rlpyt.envs.base.Env method)

 	(rlpyt.envs.gym.EnvInfoWrapper method)

 	(rlpyt.envs.gym.GymEnvWrapper method)

 	store_diagnostics() (rlpyt.runners.minibatch_rl.MinibatchRlBase method)

 	strip_ddp_state_dict() (in module rlpyt.models.utils)

 	SumTree (class in rlpyt.replays.sum_tree)

 	sync_shared_memory() (rlpyt.agents.base.BaseAgent method)

 	SyncRl (class in rlpyt.runners.sync_rl)

 	SyncRlEval (class in rlpyt.runners.sync_rl)

 	SyncRlMixin (class in rlpyt.runners.sync_rl)

T

 	
 	target() (rlpyt.agents.dqn.dqn_agent.DqnAgent method)

 	target_q() (rlpyt.agents.qpg.sac_agent.SacAgent method)

 	target_q_at_mu() (rlpyt.agents.qpg.ddpg_agent.DdpgAgent method)

 	(rlpyt.agents.qpg.td3_agent.Td3Agent method)

 	TD3 (class in rlpyt.algos.qpg.td3)

 	Td3Agent (class in rlpyt.agents.qpg.td3_agent)

 	TlPrioritizedReplayBuffer (class in rlpyt.replays.non_sequence.time_limit)

 	TlUniformReplayBuffer (class in rlpyt.replays.non_sequence.time_limit)

 	to_device() (rlpyt.agents.base.BaseAgent method)

 	
 	to_onehot() (in module rlpyt.utils.array)

 	(in module rlpyt.utils.tensor)

 	(rlpyt.distributions.discrete.DiscreteMixin method)

 	torchify_buffer() (in module rlpyt.utils.buffer)

 	train() (rlpyt.runners.async_rl.AsyncRlBase method)

 	(rlpyt.runners.base.BaseRunner method)

 	(rlpyt.runners.minibatch_rl.MinibatchRl method)

 	(rlpyt.runners.minibatch_rl.MinibatchRlEval method)

 	train_mode() (rlpyt.agents.base.BaseAgent method)

 	(rlpyt.agents.base.RecurrentAgentMixin method)

U

 	
 	UniformReplay (class in rlpyt.replays.non_sequence.uniform)

 	UniformReplayBuffer (class in rlpyt.replays.non_sequence.uniform)

 	UniformReplayFrameBuffer (class in rlpyt.replays.non_sequence.frame)

 	UniformSequenceReplay (class in rlpyt.replays.sequence.uniform)

 	UniformSequenceReplayBuffer (class in rlpyt.replays.sequence.uniform)

 	
 	UniformSequenceReplayFrameBuffer (class in rlpyt.replays.sequence.frame)

 	update_batch_priorities() (rlpyt.replays.non_sequence.prioritized.PrioritizedReplay method)

 	(rlpyt.replays.sum_tree.SumTree method)

 	update_config() (in module rlpyt.utils.launching.variant)

 	update_state_dict() (in module rlpyt.models.utils)

 	update_target() (rlpyt.agents.dqn.dqn_agent.DqnAgent method)

V

 	
 	valid_from_done() (in module rlpyt.algos.utils)

 	valid_mean() (in module rlpyt.utils.array)

 	(in module rlpyt.utils.tensor)

 	
 	value() (rlpyt.agents.pg.gaussian.GaussianPgAgent method)

 	(rlpyt.agents.pg.gaussian.RecurrentGaussianPgAgentBase method)

 	value_scale() (rlpyt.algos.dqn.r2d1.R2D1 method)

 	VariantLevel (class in rlpyt.utils.launching.variant)

Z

 	
 	zeros() (in module rlpyt.utils.misc)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to rlpyt’s documentation!

 		
 Base Classes and Interfaces

 		
 Algorithms

 		
 Environments

 		
 Agents

 		
 Recurrent Agents

 		
 Policy Gradient Implementations

 		
 Algorithms

 		
 Agents

 		
 Continuous Actions

 		
 Discrete Actions

 		
 Models

 		
 Deep Q-Learning Implementations

 		
 DQN

 		
 Categorical-DQN

 		
 Recurrent DQN (R2D1)

 		
 Miscellaneous

 		
 Q-Value Policy Gradient Implementations

 		
 Deep Deterministc Policy Gradient (DDPG)

 		
 Twin Delayed Deep Deterministic Policy Gradient (TD3)

 		
 Soft Actor Critic (SAC)

 		
 Runners

 		
 Single-GPU Runners

 		
 Multi-GPU Runners

 		
 Asynchronous Runners

 		
 Asynchronous Worker Processes

 		
 Samplers

 		
 Serial Sampler

 		
 Parallel Samplers

 		
 CPU-Agent

 		
 GPU-Agent

 		
 GPU-Agent, Alternating Workers

 		
 Parallel Sampler Worker

 		
 Asynchronous Samplers

 		
 Base Components

 		
 Serial

 		
 CPU-Agent

 		
 GPU-Agent

 		
 Main Class

 		
 Component Definitions

 		
 GPU-Agent, Alternating Workers

 		
 Main Classes

 		
 Component Definitions

 		
 Collectors

 		
 Training Collectors

 		
 Base Components

 		
 CPU-Agent Collectors

 		
 GPU-Agent Collectors

 		
 Evaluation Collectors

 		
 Distributions

 		
 Spaces

 		
 Model Components

 		
 Utilities

 		
 Environments

 		
 Atari

 		
 Gym Wrappers

 		
 Replay Buffers

 		
 Replay Buffer Components

 		
 Base Buffers

 		
 Non-Sequence Replays

 		
 Sequence Replays

 		
 Priority Tree

 		
 Full Replay Buffer Classes

 		
 Non-Sequence Replay

 		
 Sequence Replay

 		
 Named Array Tuples

 		
 Alternative Implementation

 		
 Utilities

 		
 Array

 		
 Tensor

 		
 Miscellaneous Array / Tensor

 		
 Collections

 		
 Buffers

 		
 Algorithms

 		
 Synchronize

 		
 Quick Arguments

 		
 Progress Bar

 		
 Seed

 		
 Logger

 		
 Creating and Launching Experiments

 		
 Launching

 		
 Variants

 		
 Affinity

_static/comment-bright.png

_static/ajax-loader.gif

